| Peer-Reviewed

Nonplanar Geometry Dust – Ion Acoustic Shocks in an Adiabatic Dusty Plasma with Nonthermal Electrons

Received: 24 February 2015     Accepted: 10 April 2015     Published: 25 June 2015
Views:       Downloads:
Abstract

An unmagnetized dusty plasma consisting of static negatively charged dust fluid, nonthermal distributed electrons, and adiabatic ion fluid has been considered. Basic properties of the dust-ion-acoustic shock waves have been made by the reductive perturbation method to derive the Burgers’ equation for nonplanar geometry. The solution of modified Burgers’ equation in nonplanar geometry is numerically analyzed and it has been found that, the nonplanar geometry effects have a very vital role in the development of shock waves. We also discovered that; the inclusion of the nonthermal electron distribution significantly modifies the shock wave profile. The change of the DIASW structure due to the effect of ion temperature and dust density is studied.

Published in International Journal of Astrophysics and Space Science (Volume 3, Issue 4)
DOI 10.11648/j.ijass.20150304.11
Page(s) 55-59
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Nonplaner Geometry, Dust –Ion Acoustic Shocks, Adiabatic Dusty Plasma, Non-Thermal Electron

References
[1] Shukla, P.K.(2001). A Survey of dusty plasma physics. Phys. Plasmas 8(5): 1791-1803.
[2] Bliokh, P., Sinitsin, V. and Yaroshenko, V. (1995) Dusty and Self-Gravitational Plasmas in Space. Kluwer Academic, Dordrecht.
[3] Shukla, P.K., Mendis, D.A. and Chow, V.W. (1996). The Physics of Dusty Plasmas. World Scientific, Singapore.
[4] Eya, I. O. and Urama, J. O. (2014). Statistical Study of Neutron Star Glitches. Int. J. Astrophysics and Space Science 2(2): 16 -21.
[5] Mendis, D.A. and Rosenberg, M. (1992). Some aspects of dusty-plasma interaction in cosmic environment IEEE Trans. Plasma Sci. 20(1): 929 – 934.
[6] Mendis, D. A., Shukla, P.K., Mendis, D.A. and Desai, T. (1997). Advances in Dusty Plasmas. World Scientific, Singapore.
[7] Verheest, F. (2000). Waves in Dusty Space Plasmas. Kluwer Academic, Dordrecht.
[8] Abdul, K. and Duorah, K. (2015). Electron-Positron Pairs Related to Alfven Waves on the Magnetar Surfaces. Int. J. Astrophysics and Space Science 3(3): 25 -29.
[9] Geortz, C. K. (1989). Dusty Plasma in the solar system. Rev. Geophys. 27: 271.
[10] Mendis, D.A. and Rosenberg, M. (1994). Cosmic Dusty Plasmas. Annu. Rev. Astrophys. 32: 419.
[11] D’Angelo, N. (1990). Low frequency electrostatic waves in dusty Plasma Planet. Space Sci. 38 (9): 1142 – 1146.
[12] Barkan, A., D’Angelo, N. and Merlino, R. L. (1994). Charging of Dust Grains in plasma. Phys. Rev. Lett. 73: 3093 – 3096.
[13] Barkan, A., Merlino, R. L. and D’Angelo, N. (1995). Laboratory Observation of the dust-acoustic wave mode. Phys. Plasmas 2: 3563 – 3565.
[14] Bliokh, P. V. and Yaroshenko, V. V. (1985). Electrostatic Waves in Saturn’s rings. Sov. Astron. 29: 330 – 336.
[15] De Angelis, U., Formisano, V. and Giordano, M. (1988). Ion Plasma waves in dusty plasmas. Halley’s Comet. J. Plasma Phys. 40: 399 – 406.
[16] Shukla, P. K. and Sihin, V. P. (1992). Dust ion-acoustic waves. Phys. Scripta 45: 508.
[17] Nakamura, Y., Bailung, H. and Shukla, P. K. (1999). Observation of ion-acoustic shocks in a dusty plasmas. Phys. Rev. Lett. 83: 1602.
[18] Shukla, P. K. (2000). Dust ion-acoustic shocks and holes. Phys. Plasmas 7: 1044.
[19] Shukla, P. K. and Mamun, A. A. (2002) Introduction to Dusty Plasma Physics. Bristol: IOP Publishing Ltd.
[20] Shukla, P. K. and Mamun, A.A. (2003). Solitons, Shocks and Vortices in dusty plasmas. New J. Phys. 5: 17.2 – 17.37.
[21] Rahman, A., Sayed, F. and Mamun, A. A. (2007). Dust ion-acoustic shock waves in an adiabatic dusty Plasma. Phys Plasma 14: 034503.
[22] Mamun, A. A. and Shukla, P. K. (2002). Solitary Potentials in cometry dusty Plasma. Geophys. Res. Lett. 29: 1870. doi:10.1029/2002 GLO15219.
[23] Jukui, X. and He, L. (2003). Modulational instability of Cylindrical and spherical dust ion-acoust waves. Phys. Plasmas. 10: 339.
[24] Xue, J. K. (2003). A Spherical KP equation for dust acoustic waves. Phy. Lett. A 314: 479.
[25] Xue, J. K. (2003). Cylindrical dust acoustic waves with transverse perturbation. Phys. Plasmas 10: 3430.
[26] Xue, J. K. (2005). Nonplanar dust ion-acoustic shock waves with transverse perturbation. Phys. Plasmas 2: 012314.
[27] Sahu, B. (2011). Cylindrical or Spherical Dust ion Acoustic Shocks in an Adiabatic Dusty Plasma. Bulg. J. Phys. 38: 175 – 183.
[28] Washimi, H. and Taniuti, T. (1996). Propagation of ion-acoustic solitary wave of small amplitude. Phys. Rev. Lett. 17: 996 – 998.
Cite This Article
  • APA Style

    Louis E. Akpabio, Akaninyene D. Antia. (2015). Nonplanar Geometry Dust – Ion Acoustic Shocks in an Adiabatic Dusty Plasma with Nonthermal Electrons. International Journal of Astrophysics and Space Science, 3(4), 55-59. https://doi.org/10.11648/j.ijass.20150304.11

    Copy | Download

    ACS Style

    Louis E. Akpabio; Akaninyene D. Antia. Nonplanar Geometry Dust – Ion Acoustic Shocks in an Adiabatic Dusty Plasma with Nonthermal Electrons. Int. J. Astrophys. Space Sci. 2015, 3(4), 55-59. doi: 10.11648/j.ijass.20150304.11

    Copy | Download

    AMA Style

    Louis E. Akpabio, Akaninyene D. Antia. Nonplanar Geometry Dust – Ion Acoustic Shocks in an Adiabatic Dusty Plasma with Nonthermal Electrons. Int J Astrophys Space Sci. 2015;3(4):55-59. doi: 10.11648/j.ijass.20150304.11

    Copy | Download

  • @article{10.11648/j.ijass.20150304.11,
      author = {Louis E. Akpabio and Akaninyene D. Antia},
      title = {Nonplanar Geometry Dust – Ion Acoustic Shocks in an Adiabatic Dusty Plasma with Nonthermal Electrons},
      journal = {International Journal of Astrophysics and Space Science},
      volume = {3},
      number = {4},
      pages = {55-59},
      doi = {10.11648/j.ijass.20150304.11},
      url = {https://doi.org/10.11648/j.ijass.20150304.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijass.20150304.11},
      abstract = {An unmagnetized dusty plasma consisting of static negatively charged dust fluid, nonthermal distributed electrons, and adiabatic ion fluid has been considered. Basic properties of the dust-ion-acoustic shock waves have been made by the reductive perturbation method to derive the Burgers’ equation for nonplanar geometry. The solution of modified Burgers’ equation in nonplanar geometry is numerically analyzed and it has been found that, the nonplanar geometry effects have a very vital role in the development of shock waves. We also discovered that; the inclusion of the nonthermal electron distribution significantly modifies the shock wave profile. The change of the DIASW structure due to the effect of ion temperature and dust density is studied.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Nonplanar Geometry Dust – Ion Acoustic Shocks in an Adiabatic Dusty Plasma with Nonthermal Electrons
    AU  - Louis E. Akpabio
    AU  - Akaninyene D. Antia
    Y1  - 2015/06/25
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ijass.20150304.11
    DO  - 10.11648/j.ijass.20150304.11
    T2  - International Journal of Astrophysics and Space Science
    JF  - International Journal of Astrophysics and Space Science
    JO  - International Journal of Astrophysics and Space Science
    SP  - 55
    EP  - 59
    PB  - Science Publishing Group
    SN  - 2376-7022
    UR  - https://doi.org/10.11648/j.ijass.20150304.11
    AB  - An unmagnetized dusty plasma consisting of static negatively charged dust fluid, nonthermal distributed electrons, and adiabatic ion fluid has been considered. Basic properties of the dust-ion-acoustic shock waves have been made by the reductive perturbation method to derive the Burgers’ equation for nonplanar geometry. The solution of modified Burgers’ equation in nonplanar geometry is numerically analyzed and it has been found that, the nonplanar geometry effects have a very vital role in the development of shock waves. We also discovered that; the inclusion of the nonthermal electron distribution significantly modifies the shock wave profile. The change of the DIASW structure due to the effect of ion temperature and dust density is studied.
    VL  - 3
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Theoretical physics Group, Department of Physics, University of Uyo, Uyo, Nigeria

  • Theoretical physics Group, Department of Physics, University of Uyo, Uyo, Nigeria

  • Sections