With the increasing popularity of herbomineral preparations in healthcare, a new proprietary herbomineral formulation was formulated with ashwagandha root extract and minerals viz. zinc, magnesium, and selenium. The aim of the study was to evaluate the immunomodulatory potential of Biofield Energy Healing (The Trivedi Effect®) on the herbomineral test formulation using mice splenocytes. The test formulation was divided into two parts. One part was the control without the Biofield Treatment. The other part was labelled the Biofield Treated sample, which received the Biofield Energy Healing Treatment remotely from twenty renowned Biofield Energy Healers. The splenocyte cells were exposed with the test formulation at ranges of 0.00001053 to 10.53 µg/mL for cell viability by MTT assay, with cell viability ranging from 77.50% to 176.52%. TNF-α was significantly inhibited by 15.88%, 15.28%, 12.30%, 12.60%, and 22.72% at 0.00001053, 0.001053, 0.1053, 1.053, and 10.53 µg/mL, respectively in the Biofield Treated test formulation compared to the vehicle control (VC). TNF-α was significantly reduced by 2.33% and 8.35% at 1.053 and 10.53 µg/mL, respectively compared to the untreated test formulation. IL-1β was significantly reduced by 30.81%, 27.36%, 23.92%, 18.40%, 11.27%, and 21.16% at 0.00001053, 0.0001053, 0.001053, 0.01053, 0.1053, and 1.053 µg/mL, respectively in the Biofield Treated test formulation compared to the VC. IL-1β was significantly reduced by 48.63% (p≤0.001) and 15.28% at 0.00001053 and 0.0001053 µg/mL, respectively in the Biofield Treated test formulation compared to the untreated test formulation. MIP-1α expression was inhibited by the Biofield Treated test formulation and showed immunosuppressive activity at 0.01053, 0.1053, 1.053, and 10.53 µg/mL by 22.33%, 16.25%, 15.58%, and 21.83%, respectively compared to the VC. The Biofield Treated test formulation significantly reduced the MIP-1α expression by 13.27% and 15.67% (p<0.05) at 0.01053 and 10.53 µg/mL, respectively compared to the untreated test formulation. The results showed the expression of IFN-γ was significantly reduced by 33.45%, 25.38%, 37.15%, 27.74%, 32.44%, 23.03%, and 44.21% at 0.00001053, 0.0001053, 0.001053, 0.01053, 0.1053, 1.053, and 10.53 µg/mL, respectively in the Biofield Treated test formulation compared to the VC. Further, the IFN-γ level was significantly decreased by 19.02% at 10.53 µg/mL in the Biofield Treated test formulation compared to the untreated test formulation. Overall, the results demonstrate that The Trivedi Effect® Biofield Energy Healing (TEBEH) significantly enhanced the anti-inflammatory and immunomodulatory properties of the treated formulation, and may also be useful in organ transplants, anti-aging, and stress management by improving overall health and quality of life.
Published in | International Journal of Biomedical Science and Engineering (Volume 4, Issue 5) |
DOI | 10.11648/j.ijbse.20160405.11 |
Page(s) | 40-49 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Biofield Energy Healing Treatment, Biofield Energy Healers, The Trivedi Effect®, Inflammation, Immunomodulation, Splenocytes, MIP-1α, IL-1β, TNF-α, IFN-γ
[1] | Thomson GE (2007) The Health Benefits of Traditional Chinese Plant Medicines: Weighing the Scientific Evidence: A Report for the Rural Industries Research and Development Corporation, RIRDC, Barton, Australia. |
[2] | Rishton GM (2008) Natural products as a robust source of new drugs and drug leads: Past successes and present day issues. Am J Cardiol 101: 43D-49D. |
[3] | Darien BJ, Godbee RJ (2009) Morinda citrifolia based formulations for regulating T cell immunomodulation in neonatal stock animals. USA Patent 20090068204. |
[4] | Ziauddin M, Phansalkar N, Patki P, Diwanay S, Patwardhan B (1996) Studies on the immunomodulatory effects of ashwagandha. J Ethnopharmacol 50: 69-76. |
[5] | Lukác N, Massányi P (2007) Effects of trace elements on the immune system. Epidemiol Mikrobiol Imunol 56: 3-9. |
[6] | Galland L (1998) Magnesium and immune function: An overview. Magnesium 7: 290-299. |
[7] | Wintergerst ES, Maggini S, Hornig DH (2007) Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab 51: 301-323. |
[8] | Girdhari L, Rana A (2007) Withania somnifera (Ashwagandha): A review. Pharmacogn Rev 1: 129-136. |
[9] | Owais M, Sharad KS, Shehbaz A, Saleemuddin M (2005) Antibacterial efficacy of Withania somnifera (Ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine 12: 229-235. |
[10] | Singh N, Bhalla M, de Jager P, Gilca M (2011) An overview on ashwagandha: A Rasayana (Rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med 8: 208-213. |
[11] | Mazumder PM, Pattnayak S, Parvani H, Sasmal D, Rathinavelusamy P (2012) Evaluation of immunomodulatory activity of Glycyrhiza glabra L roots in combination with zing. Asian Pac J Trop Biomed 2: S15-S20. |
[12] | Lutgendorf SK, Mullen-Houser E, Russell D, Degeest K, Jacobson G, Hart L, Bender D, Anderson B, Buekers TE, Goodheart MJ, Antoni MH, Sood AK, Lubaroff DM (2010) Preservation of immune function in cervical cancer patients during chemoradiation using a novel integrative approach. Brain Behav Immun 24: 1231-1240. |
[13] | Ironson G, Field T, Scafidi F (1996) Massage therapy is associated with enhancement of the immune system's cytotoxic capacity. Int J Neurosci 84: 205-217. |
[14] | Jain S, Hammerschlag R, Mills P, Cohen L, Krieger R, Vieten C, Lutgendorf S (2015) Clinical studies of biofield therapies: Summary, methodological challenges, and recommendations. Glob Adv Health Med 4: 58-66. |
[15] | Rubik B (2002) The biofield hypothesis: Its biophysical basis and role in medicine. J Altern Complement Med 8: 703-717. |
[16] | Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) The potential impact of biofield treatment on human brain tumor cells: A time-lapse video microscopy. J Integr Oncol 4: 141. |
[17] | Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) In vitro evaluation of biofield treatment on cancer biomarkers involved in endometrial and prostate cancer cell lines. J Cancer Sci Ther 7: 253-257. |
[18] | Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) In vitro evaluation of biofield treatment on Enterobacter cloacae: Impact on antimicrobial susceptibility and biotype. J Bacteriol Parasitol 6: 241. |
[19] | Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) Evaluation of biofield modality on viral load of hepatitis B and C Viruses. J Antivir Antiretrovir 7: 083-088. |
[20] | Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) An impact of biofield treatment: Antimycobacterial susceptibility potential using BACTEC 460/MGIT-TB System. Mycobact Dis 5: 189. |
[21] | Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Antimicrobial sensitivity, biochemical characteristics and biotyping of Staphylococcus saprophyticus: An impact of biofield energy treatment. J Women’s Health Care 4: 271. |
[22] | Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Evaluation of antibiogram, genotype and phylogenetic analysis of biofield treated Nocardia otitidis. Biol Syst Open Access 4: 143. |
[23] | Trivedi MK, Branton A, Trivedi D, Nayak G, Charan S, Jana S (2015) Phenotyping and 16S rDNA analysis after biofield treatment on Citrobacter braakii: A urinary pathogen. J Clin Med Genom 3: 129. |
[24] | Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Spectroscopic characterization of chloramphenicol and tetracycline: An impact of biofield. Pharm Anal Acta 6: 395. |
[25] | Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Spectroscopic characterization of biofield treated metronidazole and tinidazole. Med Chem 5: 340-344. |
[26] | Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Effect of biofield treatment on spectral properties of paracetamol and piroxicam. Chem Sci J 6: 98. |
[27] | Trivedi MK, Branton A, Trivedi D, Shettigar H, Bairwa K, Jana S (2015) Fourier transform infrared and ultraviolet-visible spectroscopic characterization of biofield treated salicylic acid and sparfloxacin. Nat Prod Chem Res 3: 186. |
[28] | Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2016) Molecular analysis of biofield treated eggplant and watermelon crops. Adv Crop Sci Tech 4: 208. |
[29] | Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Morphological characterization, quality, yield and DNA fingerprinting of biofield energy treated alphonso mango (Mangifera indica L.). Journal of Food and Nutrition Sciences 3: 245-250. |
[30] | Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Evaluation of plant growth, yield and yield attributes of biofield energy treated mustard (Brassica juncea) and chick pea (Cicer arietinum) seeds. Agriculture, Forestry and Fisheries 4: 291-295. |
[31] | Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Evaluation of plant growth regulator, immunity and DNA fingerprinting of biofield energy treated mustard seeds (Brassica juncea). Agriculture, Forestry and Fisheries 4: 269-274. |
[32] | Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Jana S (2015) Characterization of physical and structural properties of aluminum carbide powder: Impact of biofield treatment. J Aeronaut Aerospace Eng 4: 142. |
[33] | Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O, Jana S (2015) Impact of biofield treatment on atomic and structural characteristics of barium titanate powder. Ind Eng Manage 4: 166. |
[34] | Trivedi MK, Patil S, Nayak G, Jana S, Latiyal O (2015) Influence of biofield treatment on physical, structural and spectral properties of boron nitride. J Material Sci Eng 4: 181. |
[35] | Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O, Jana S (2015) Characterization of physical and structural properties of brass powder after biofield treatment. J Powder Metall Min 4: 134. |
[36] | Wu QL, Fu YF, Zhou WL, Wang JX, Feng YH, Liu J, Xu JY, He PL, Zhou R, Tang W, Wang GF, Zhou Y, Yang YF, Ding J, Li XY, Chen XR, Yuan C, Lawson BR, Zuo JP (2005) Inhibition of S-adenosyl-l-homocysteine hydrolase induces immunosuppression. J Pharmacol Exp Ther 313: 705-711. |
[37] | Madaan A, Kanjilal S, Gupta A, Sastry JL, Verma R, Singh AT, Jaggi M (2015) Evaluation of immunostimulatory activity of Chyawanprash using in vitro assays. Indian J Exp Biol 53: 158-163. |
[38] | Singh D, Aggarwal A, Maurya R, Naik S (2007) Withania somnifera inhibits NF-κB and AP-1 transcription factors in human peripheral blood and synovial fluid mononuclear cells. Phytother Res 21: 905-913. |
[39] | Rayman MP (2000) The importance of selenium to human health. Lancet 356: 233-241. |
[40] | Ren F, Chen X, Hesketh J, Gan F, Huang K (2012) Selenium promotes T-cell response to TCR-stimulation and ConA, but not PHA in primary porcine splenocytes. PLoS One 7: e35375. |
[41] | Kruse-Jarres JD (1989) The significance of zinc for humoral and cellular immunity. J Trace Elem Electrolytes Health Dis 3: 1-8. |
[42] | Abbas AK, Lichtman AH (2005) Cellular and Molecular Immunology, 5th ed.; Elsevier Saunders: Philadelphia, PA, USA. |
[43] | Sugimoto J, Romani AM, Valentin-Torres AM, Luciano AA, Ramirez Kitchen CM (2012) Magnesium decreases inflammatory cytokine production: A novel innate immunomodulatory mechanism. J Immunol 188. |
[44] | Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214: 149-160. |
[45] | Jesus AA, Goldbach-Mansky R (2014) IL-1 blockade in autoinflammatory syndromes. Annu Rev Med 65: 223-244. |
[46] | Haeberle HA, Kuziel WA, Dieterich HJ, Casola A, Gatalica Z, Garofalo RP (2001) Inducible expression of inflammatory chemokines in respiratory syncytial virus-infected mice: Role of MIP-1alpha in lung pathology. J Virol 75: 878-890. |
[47] | Chong IW, Lin SR, Hwang JJ, Huang MS, Wang TH, Hung JY, Paulauskis JD (2002) Expression and regulation of the macrophage inflammatory protein-1 alpha gene by nicotine in rat alveolar macrophages. Eur Cytokine Netw 13: 242-249. |
[48] | Lin FC, Young HA (2013) The talented interferon-gamma. Advances in Bioscience and Biotechnology 4: 6-13. |
[49] | De Saint Jean M, Brignole F, Feldmann G, Goguel A, Baudouin C (1999) Interferon-gamma induces apoptosis and expression of inflammation-related proteins in Chang conjunctival cells. Invest Ophthalmol Vis Sci 40: 2199-2212. |
[50] | Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31: 986-1000. |
[51] | Jain S, Mills PJ (2010) Biofield therapies: Helpful or full of hype? A best evidence synthesis. Int J Behav Med 17: 1-16. |
[52] | Warber SL, Cornelio D, Straughn J, Kile G (2004) Biofield energy healing from the inside. J Altern Complement Med 10: 1107-1113. |
APA Style
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Michael Peter Ellis, et al. (2016). Evaluation of Pro-Inflammatory Cytokines Expression in Mouse Splenocytes After Co-Incubation with the Biofield Energy Treated Formulation: Impact of the Trivedi Effect®. International Journal of Biomedical Science and Engineering, 4(5), 40-49. https://doi.org/10.11648/j.ijbse.20160405.11
ACS Style
Mahendra Kumar Trivedi; Alice Branton; Dahryn Trivedi; Gopal Nayak; Michael Peter Ellis, et al. Evaluation of Pro-Inflammatory Cytokines Expression in Mouse Splenocytes After Co-Incubation with the Biofield Energy Treated Formulation: Impact of the Trivedi Effect®. Int. J. Biomed. Sci. Eng. 2016, 4(5), 40-49. doi: 10.11648/j.ijbse.20160405.11
AMA Style
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Michael Peter Ellis, et al. Evaluation of Pro-Inflammatory Cytokines Expression in Mouse Splenocytes After Co-Incubation with the Biofield Energy Treated Formulation: Impact of the Trivedi Effect®. Int J Biomed Sci Eng. 2016;4(5):40-49. doi: 10.11648/j.ijbse.20160405.11
@article{10.11648/j.ijbse.20160405.11, author = {Mahendra Kumar Trivedi and Alice Branton and Dahryn Trivedi and Gopal Nayak and Michael Peter Ellis and James Jeffery Peoples and James Joseph Meuer and Johanne Dodon and John Lawrence Griffin and John Suzuki and Joseph Michael Foty and Judy Weber and Julia Grace McCammon and Karen Brynes Allen and Kathryn Regina Sweas and Lezley Jo-Anne Wright and Lisa A. Knoll and Madeline E. Michaels and Margaret Kweya Wahl and Mark E. Stutheit and Michelle Barnard and Muriel Mae Ranger and Paromvong Sinbandhit and V. J. Kris Elig and Sambhu Charan Mondal and Snehasis Jana}, title = {Evaluation of Pro-Inflammatory Cytokines Expression in Mouse Splenocytes After Co-Incubation with the Biofield Energy Treated Formulation: Impact of the Trivedi Effect®}, journal = {International Journal of Biomedical Science and Engineering}, volume = {4}, number = {5}, pages = {40-49}, doi = {10.11648/j.ijbse.20160405.11}, url = {https://doi.org/10.11648/j.ijbse.20160405.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijbse.20160405.11}, abstract = {With the increasing popularity of herbomineral preparations in healthcare, a new proprietary herbomineral formulation was formulated with ashwagandha root extract and minerals viz. zinc, magnesium, and selenium. The aim of the study was to evaluate the immunomodulatory potential of Biofield Energy Healing (The Trivedi Effect®) on the herbomineral test formulation using mice splenocytes. The test formulation was divided into two parts. One part was the control without the Biofield Treatment. The other part was labelled the Biofield Treated sample, which received the Biofield Energy Healing Treatment remotely from twenty renowned Biofield Energy Healers. The splenocyte cells were exposed with the test formulation at ranges of 0.00001053 to 10.53 µg/mL for cell viability by MTT assay, with cell viability ranging from 77.50% to 176.52%. TNF-α was significantly inhibited by 15.88%, 15.28%, 12.30%, 12.60%, and 22.72% at 0.00001053, 0.001053, 0.1053, 1.053, and 10.53 µg/mL, respectively in the Biofield Treated test formulation compared to the vehicle control (VC). TNF-α was significantly reduced by 2.33% and 8.35% at 1.053 and 10.53 µg/mL, respectively compared to the untreated test formulation. IL-1β was significantly reduced by 30.81%, 27.36%, 23.92%, 18.40%, 11.27%, and 21.16% at 0.00001053, 0.0001053, 0.001053, 0.01053, 0.1053, and 1.053 µg/mL, respectively in the Biofield Treated test formulation compared to the VC. IL-1β was significantly reduced by 48.63% (p≤0.001) and 15.28% at 0.00001053 and 0.0001053 µg/mL, respectively in the Biofield Treated test formulation compared to the untreated test formulation. MIP-1α expression was inhibited by the Biofield Treated test formulation and showed immunosuppressive activity at 0.01053, 0.1053, 1.053, and 10.53 µg/mL by 22.33%, 16.25%, 15.58%, and 21.83%, respectively compared to the VC. The Biofield Treated test formulation significantly reduced the MIP-1α expression by 13.27% and 15.67% (p<0.05) at 0.01053 and 10.53 µg/mL, respectively compared to the untreated test formulation. The results showed the expression of IFN-γ was significantly reduced by 33.45%, 25.38%, 37.15%, 27.74%, 32.44%, 23.03%, and 44.21% at 0.00001053, 0.0001053, 0.001053, 0.01053, 0.1053, 1.053, and 10.53 µg/mL, respectively in the Biofield Treated test formulation compared to the VC. Further, the IFN-γ level was significantly decreased by 19.02% at 10.53 µg/mL in the Biofield Treated test formulation compared to the untreated test formulation. Overall, the results demonstrate that The Trivedi Effect® Biofield Energy Healing (TEBEH) significantly enhanced the anti-inflammatory and immunomodulatory properties of the treated formulation, and may also be useful in organ transplants, anti-aging, and stress management by improving overall health and quality of life.}, year = {2016} }
TY - JOUR T1 - Evaluation of Pro-Inflammatory Cytokines Expression in Mouse Splenocytes After Co-Incubation with the Biofield Energy Treated Formulation: Impact of the Trivedi Effect® AU - Mahendra Kumar Trivedi AU - Alice Branton AU - Dahryn Trivedi AU - Gopal Nayak AU - Michael Peter Ellis AU - James Jeffery Peoples AU - James Joseph Meuer AU - Johanne Dodon AU - John Lawrence Griffin AU - John Suzuki AU - Joseph Michael Foty AU - Judy Weber AU - Julia Grace McCammon AU - Karen Brynes Allen AU - Kathryn Regina Sweas AU - Lezley Jo-Anne Wright AU - Lisa A. Knoll AU - Madeline E. Michaels AU - Margaret Kweya Wahl AU - Mark E. Stutheit AU - Michelle Barnard AU - Muriel Mae Ranger AU - Paromvong Sinbandhit AU - V. J. Kris Elig AU - Sambhu Charan Mondal AU - Snehasis Jana Y1 - 2016/12/29 PY - 2016 N1 - https://doi.org/10.11648/j.ijbse.20160405.11 DO - 10.11648/j.ijbse.20160405.11 T2 - International Journal of Biomedical Science and Engineering JF - International Journal of Biomedical Science and Engineering JO - International Journal of Biomedical Science and Engineering SP - 40 EP - 49 PB - Science Publishing Group SN - 2376-7235 UR - https://doi.org/10.11648/j.ijbse.20160405.11 AB - With the increasing popularity of herbomineral preparations in healthcare, a new proprietary herbomineral formulation was formulated with ashwagandha root extract and minerals viz. zinc, magnesium, and selenium. The aim of the study was to evaluate the immunomodulatory potential of Biofield Energy Healing (The Trivedi Effect®) on the herbomineral test formulation using mice splenocytes. The test formulation was divided into two parts. One part was the control without the Biofield Treatment. The other part was labelled the Biofield Treated sample, which received the Biofield Energy Healing Treatment remotely from twenty renowned Biofield Energy Healers. The splenocyte cells were exposed with the test formulation at ranges of 0.00001053 to 10.53 µg/mL for cell viability by MTT assay, with cell viability ranging from 77.50% to 176.52%. TNF-α was significantly inhibited by 15.88%, 15.28%, 12.30%, 12.60%, and 22.72% at 0.00001053, 0.001053, 0.1053, 1.053, and 10.53 µg/mL, respectively in the Biofield Treated test formulation compared to the vehicle control (VC). TNF-α was significantly reduced by 2.33% and 8.35% at 1.053 and 10.53 µg/mL, respectively compared to the untreated test formulation. IL-1β was significantly reduced by 30.81%, 27.36%, 23.92%, 18.40%, 11.27%, and 21.16% at 0.00001053, 0.0001053, 0.001053, 0.01053, 0.1053, and 1.053 µg/mL, respectively in the Biofield Treated test formulation compared to the VC. IL-1β was significantly reduced by 48.63% (p≤0.001) and 15.28% at 0.00001053 and 0.0001053 µg/mL, respectively in the Biofield Treated test formulation compared to the untreated test formulation. MIP-1α expression was inhibited by the Biofield Treated test formulation and showed immunosuppressive activity at 0.01053, 0.1053, 1.053, and 10.53 µg/mL by 22.33%, 16.25%, 15.58%, and 21.83%, respectively compared to the VC. The Biofield Treated test formulation significantly reduced the MIP-1α expression by 13.27% and 15.67% (p<0.05) at 0.01053 and 10.53 µg/mL, respectively compared to the untreated test formulation. The results showed the expression of IFN-γ was significantly reduced by 33.45%, 25.38%, 37.15%, 27.74%, 32.44%, 23.03%, and 44.21% at 0.00001053, 0.0001053, 0.001053, 0.01053, 0.1053, 1.053, and 10.53 µg/mL, respectively in the Biofield Treated test formulation compared to the VC. Further, the IFN-γ level was significantly decreased by 19.02% at 10.53 µg/mL in the Biofield Treated test formulation compared to the untreated test formulation. Overall, the results demonstrate that The Trivedi Effect® Biofield Energy Healing (TEBEH) significantly enhanced the anti-inflammatory and immunomodulatory properties of the treated formulation, and may also be useful in organ transplants, anti-aging, and stress management by improving overall health and quality of life. VL - 4 IS - 5 ER -