| Peer-Reviewed

Existence of Time Periodic Solutions of New Classes of Nonlinear Problems

Received: 30 July 2015     Accepted: 17 August 2015     Published: 26 August 2015
Views:       Downloads:
Abstract

We study the existence of one or more weak periodic solutions of nonlinear evolution PDEs in a cylinder of RN+1 with conditions on lateral surface by using the results connected to a general evolution variational equation depending on a parameter.

Published in Pure and Applied Mathematics Journal (Volume 4, Issue 5)
DOI 10.11648/j.pamj.20150405.11
Page(s) 189-215
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Time Periodic, Evolution PDEs, Nonstationarity, Weak Periodic Solutions

References
[1] R.A. Adams, Sobolev spaces, Academic Press (1975).
[2] S.Agmon, The Lp approach to the Dirichlet problem.I.Ann.Sc.Norm.Sup.Pisa (1959), 405-448.
[3] A.Anane, Simplicité et isolation de la première valeur propre du p-laplacian avec poids, C.R.Acad.Sci,Paris, Sér.I, 305 (1987), 725-728.
[4] C.Q.Dai, Y.Y.Wang, Notes on the equivalence of different variable separation approaches for nonlinear evolution equations, Communications in Nonlinear Science and Numerical Simulations, vol.19 (1) (2014),pp.19-28.
[5] J.Diblik, B.Iričanin, S.Stević, Note on the exixtence of periodic solutions of systems of differential-difference equations, Applied Mathematics. and Computation,vol 232(2014), pp. 922-928
[6] J.L.Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969).
[7] X.Liu, Y.Zhang, H.Shi, Existence of periodic solutions for a class of nonlinear difference equations,Qualitative theory of Dynamical Systems, vol 14,issue 1 (2015), pp.51-69.
[8] Z.Luo, Multiple positive periodic solutions for functional differential equations with impulses and a parameter, Abstract and Applied Analysis, vol 2014, http://dx.doi.org/10.1155/2014/812867.
[9] R.Ma, R.Chen, Z.He, Positive periodic solutions of second-order differential equations with weak singularities, Applied Mathematics. and Computation, vol 232(2014), pp.97-103.
[10] L.Toscano, S.Toscano, On the solvability of a class of general systems of variational equations with nonmonotone operators, Journal of Interdisciplinary Mathematics 14, n.2, (2011), 123-147.
[11] L.Toscano, S.Toscano, Dirichlet and Neumann problems related to nonlinear elliptic systems: solvability, multiple solutions, solutions with positive components, Abstract and Applied Analysis (2012), 1-44.
[12] L.Toscano, S.Toscano, On the solvability of a class of general systems of variational equations with nonmonotone operators: a new result. Applications to Dirichlet and Neumann nonlinear problems, preprint (2015).
[13] S.I. Pohozaev, On periodic solutions to certain nonlinear hyperbolic equations, Dokl. Akad. Nauk SSSR.(1971), vol.198.No 6, pp.1274-1277.
[14] S.I. Pohozaev, On the global fibering method in nonlinear variational problems, Proc.Steklov Inst.of Math, 219 (1997), 281-328.
[15] S.I. Pohozaev, The existence and nonexistence of periodic solutions to certain nonlinear hyperbolic equations, Proceedings of the Steklov Institute of Mathematics, vol.227 (1999), pp.254-279.
[16] E.Zeidler, Nonlinear functional analysis and its applications, II/A, Springer-Verlag (1980).
Cite This Article
  • APA Style

    Luisa Toscano, Speranza Toscano. (2015). Existence of Time Periodic Solutions of New Classes of Nonlinear Problems. Pure and Applied Mathematics Journal, 4(5), 189-215. https://doi.org/10.11648/j.pamj.20150405.11

    Copy | Download

    ACS Style

    Luisa Toscano; Speranza Toscano. Existence of Time Periodic Solutions of New Classes of Nonlinear Problems. Pure Appl. Math. J. 2015, 4(5), 189-215. doi: 10.11648/j.pamj.20150405.11

    Copy | Download

    AMA Style

    Luisa Toscano, Speranza Toscano. Existence of Time Periodic Solutions of New Classes of Nonlinear Problems. Pure Appl Math J. 2015;4(5):189-215. doi: 10.11648/j.pamj.20150405.11

    Copy | Download

  • @article{10.11648/j.pamj.20150405.11,
      author = {Luisa Toscano and Speranza Toscano},
      title = {Existence of Time Periodic Solutions of New Classes of Nonlinear Problems},
      journal = {Pure and Applied Mathematics Journal},
      volume = {4},
      number = {5},
      pages = {189-215},
      doi = {10.11648/j.pamj.20150405.11},
      url = {https://doi.org/10.11648/j.pamj.20150405.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.20150405.11},
      abstract = {We study the existence of one or more weak periodic solutions of nonlinear evolution PDEs in a cylinder of RN+1 with conditions on lateral surface by using the results connected to a general evolution variational equation depending on a parameter.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Existence of Time Periodic Solutions of New Classes of Nonlinear Problems
    AU  - Luisa Toscano
    AU  - Speranza Toscano
    Y1  - 2015/08/26
    PY  - 2015
    N1  - https://doi.org/10.11648/j.pamj.20150405.11
    DO  - 10.11648/j.pamj.20150405.11
    T2  - Pure and Applied Mathematics Journal
    JF  - Pure and Applied Mathematics Journal
    JO  - Pure and Applied Mathematics Journal
    SP  - 189
    EP  - 215
    PB  - Science Publishing Group
    SN  - 2326-9812
    UR  - https://doi.org/10.11648/j.pamj.20150405.11
    AB  - We study the existence of one or more weak periodic solutions of nonlinear evolution PDEs in a cylinder of RN+1 with conditions on lateral surface by using the results connected to a general evolution variational equation depending on a parameter.
    VL  - 4
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Dep. of Math. and Appl.”R. Caccioppoli”,Univ. of Naples “Federico II”, via Cintia, Monte S. Angelo, Italy

  • Dep. of Civil Ing,. Second Univ. of Naples, fac. of Ing., Aversa (CE), Italy

  • Sections