A new approach based on algebraic quantum operator, is pursued in order to investigate the Aharonov-Bohm effect. Introducing a SU(2) dynamical invariance algebra, the discrete spectrum and the energy level of the quantum Aharonov-Bohm effect is obtained. This alternative method will help undergraduate students to broader their knowledge about this interesting quantum phenomenon.
Published in | American Journal of Modern Physics (Volume 4, Issue 2) |
DOI | 10.11648/j.ajmp.20150402.12 |
Page(s) | 44-49 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Quantum Physics, Schrödinger Equation, Spherical Coordinates, Hyperbolic Coordinates, Aharonov-Bohm Effect, Operator
[1] | S. Gasiorowicz: Quantum physics, John Wiley (1974) |
[2] | Y. Aharonov, D. Bohm: Physical Review 115: 485–91 (1959) |
[3] | L. Page: Physical Review 36, 444 (1930) |
[4] | A. Batelaan, A. Tonomura: Physics Today 62 (9): 38-43 (2009) |
[5] | E. Sjöqvist: Physical Review Letters 89 (21): 210401 (2002) |
[6] | W. Ehrenberg, R.E. Siday: Proceedings of the Physical Society. Series B 62: 8–21 (1949) |
[7] | F.D. Peat: Infinite Potential: The Life and Times of David Bohm, Addison-Wesley. ISBN 0-201-40635-7 (1997) |
[8] | Y. Aharonov, D. Bohm: Physical Review 123: 1511–1524 (1961) |
[9] | M. Peshkin, A. Tonomura: The Aharonov–Bohm effect. Springer-Verlag. ISBN 3-540-51567-4 (1989) |
[10] | L. Vaidman: Physical Review A 86 (4): 040101 (2012) |
[11] | R. Feynman: The Feynman Lectures on Physics 2, pp. 15–5 (1964) |
[12] | V.Y. Chernyak, N.A. Sinitsyn: Journal of Chemical Physics 131(18): 181101 (2009) |
[13] | H.D. Doebner, E. Papp: Physics Letters A 144, 8–9, Pages 423–426 (1990) |
[14] | Gh. E. Draganascu, C. Campigotto, M. Kibler: Physics Letters A 170, 6, 339–343 (1992) |
[15] | M. Kibler, C. Campigotto: Physics Letters A 181, 1, 1–6 (1993) |
[16] | M. R. Brown, B. J. Hiley: arXiv:quant-ph/0005026v5 |
[17] | S. Sakoda, M. Omote: Advances in Imaging and Electron Physics 1, 110, 101–171 (1999) |
[18] | M. Aktaş: International Journal of Theoretical Physics 48, 7, 2145–2163 (2009) |
[19] | M. Aktaş: Journal of Mathematical Chemistry 49, 9, 1831–1842 (2011) |
[20] | E. Jung, M-R. Hwang, C-S. Park, D. Park: Journal of Physics A: Mathematical and Theoretical 45, 5, 055301 (2012) |
APA Style
Farrin Payandeh. (2015). An Algebraic Operator Approach to Aharonov-Bohm Effect. American Journal of Modern Physics, 4(2), 44-49. https://doi.org/10.11648/j.ajmp.20150402.12
ACS Style
Farrin Payandeh. An Algebraic Operator Approach to Aharonov-Bohm Effect. Am. J. Mod. Phys. 2015, 4(2), 44-49. doi: 10.11648/j.ajmp.20150402.12
AMA Style
Farrin Payandeh. An Algebraic Operator Approach to Aharonov-Bohm Effect. Am J Mod Phys. 2015;4(2):44-49. doi: 10.11648/j.ajmp.20150402.12
@article{10.11648/j.ajmp.20150402.12, author = {Farrin Payandeh}, title = {An Algebraic Operator Approach to Aharonov-Bohm Effect}, journal = {American Journal of Modern Physics}, volume = {4}, number = {2}, pages = {44-49}, doi = {10.11648/j.ajmp.20150402.12}, url = {https://doi.org/10.11648/j.ajmp.20150402.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20150402.12}, abstract = {A new approach based on algebraic quantum operator, is pursued in order to investigate the Aharonov-Bohm effect. Introducing a SU(2) dynamical invariance algebra, the discrete spectrum and the energy level of the quantum Aharonov-Bohm effect is obtained. This alternative method will help undergraduate students to broader their knowledge about this interesting quantum phenomenon.}, year = {2015} }
TY - JOUR T1 - An Algebraic Operator Approach to Aharonov-Bohm Effect AU - Farrin Payandeh Y1 - 2015/02/26 PY - 2015 N1 - https://doi.org/10.11648/j.ajmp.20150402.12 DO - 10.11648/j.ajmp.20150402.12 T2 - American Journal of Modern Physics JF - American Journal of Modern Physics JO - American Journal of Modern Physics SP - 44 EP - 49 PB - Science Publishing Group SN - 2326-8891 UR - https://doi.org/10.11648/j.ajmp.20150402.12 AB - A new approach based on algebraic quantum operator, is pursued in order to investigate the Aharonov-Bohm effect. Introducing a SU(2) dynamical invariance algebra, the discrete spectrum and the energy level of the quantum Aharonov-Bohm effect is obtained. This alternative method will help undergraduate students to broader their knowledge about this interesting quantum phenomenon. VL - 4 IS - 2 ER -