The hypothesis was earlier suggested by the author where all micro-objects are considered as specific distortions of the physical space-time pseudo-Euclidean geometry, namely, as closed topological 4-manifolds. The foundation of the hypothesis is a geometrical interpretation of the basic equation of quantum mechanics for classical (not quantized) wave fields -- the Dirac equation for free particle. Such hypothesis does not contradict to any physical laws and experimental facts and gives firstly an opportunity to explain qualitatively within classical notions (geometrical) the so called “paradoxical” properties of quantum particles such as wave-corpuscular duality, appearance of probabilities in the quantum mechanics formalism, spin, EPR-paradox.To demonstrate prospects for suggested geometrical approach the author early attempted to find new dynamic equations other than known quantum-mechanical ones for atomic spectra calculations. In this work above investigation is being continued on a more rigorous basis, representing a new geometrical interpretation of the equation for hydrogen atoms. Results of calculations of ionization potentials for helium atom are in agreement with experimental data.
Published in | American Journal of Physics and Applications (Volume 2, Issue 5) |
DOI | 10.11648/j.ajpa.20140205.12 |
Page(s) | 108-112 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Geometrical Interpretation, Quantum Mechanics, Atomic Spectra, Helium Spectrum
[1] | O. A. Olkhov, “Geometrical approach to the atomic spectra theory. The helium atom,” Russian J.of Phys.Chemistry B, vol. 8, pp.30—42, February 2014 [Chim.Fis., p.36, vol.33, №2, 2014]. |
[2] | O. A. Olkhov, “Geometrization of Quantum Mechanics,” Journal of Rhys.:Conf.Ser. vol. 67, p.012037. 2007. |
[3] | O. A. Olkhov, “Geometrization of Classical Wave fields,” Mellwill, Ney York, AIP Conference Proceedings p. 316, vol.962,2008(Proc.Int.Conf,“Quantum theory: Reconsideration of Foundations, Vaxjo, Sweden, 11-16 June, 2007, 2007); arXiv: 802.2269 |
[4] | L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics. vol.4: V. B. Berestetzki, E. M. Lifshitz, L. P. Pitaevski, Quantum Electrodynamics, Butterworth-Heinemann, 1982. |
[5] | B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry—Methods and Applications, Part 2: The Geometry and Topology of Manifolds, Springer, 1985. |
[6] | A. S. Schwartz, Quantum field theory and topology. Grundlehren der Math. Wissen.307, Springer, 1993. |
[7] | H. S. M. Coxeter, Introduction to geometry. New York, London: John Wiley&Sons, 1961. |
[8] | P. K. Rashevski, Riemann geometry and tensor analysis (in Russian). Moscow, Nauka, 1966. |
[9] | V. A. Zelnorovich, Theory of spinors and its applications (in Russian). Moscow, August-Print, 2001. |
[10] | Ta-Pei Cheng, Ling-Fong Li, Gauge theory of elementary particle physics. Clarendon Press, Oxford, 1984. |
[11] | V. Popov, N. Konopleva, Gauge fields. Gordon and Breach Publishing Group, 1982. |
[12] | H. A. Bethe and E. E. Salpeter, Quantum mechanics of one- and two-electron atoms. Berlin-Gottingen-Heidelberg, Springer-Verlag, 1957. |
[13] | V. Heine, Group theory in quantum mechanics. London-Oxford-New York-Paris, Pergamon Press, 1960. |
[14] | L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, vol.2, L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, Butterworth—Heinemann, 1975. |
APA Style
Oleg Olkhov. (2014). Geometrical Approach in Atomic Physics: Atoms of Hydrogen and Helium. American Journal of Physics and Applications, 2(5), 108-112. https://doi.org/10.11648/j.ajpa.20140205.12
ACS Style
Oleg Olkhov. Geometrical Approach in Atomic Physics: Atoms of Hydrogen and Helium. Am. J. Phys. Appl. 2014, 2(5), 108-112. doi: 10.11648/j.ajpa.20140205.12
AMA Style
Oleg Olkhov. Geometrical Approach in Atomic Physics: Atoms of Hydrogen and Helium. Am J Phys Appl. 2014;2(5):108-112. doi: 10.11648/j.ajpa.20140205.12
@article{10.11648/j.ajpa.20140205.12, author = {Oleg Olkhov}, title = {Geometrical Approach in Atomic Physics: Atoms of Hydrogen and Helium}, journal = {American Journal of Physics and Applications}, volume = {2}, number = {5}, pages = {108-112}, doi = {10.11648/j.ajpa.20140205.12}, url = {https://doi.org/10.11648/j.ajpa.20140205.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpa.20140205.12}, abstract = {The hypothesis was earlier suggested by the author where all micro-objects are considered as specific distortions of the physical space-time pseudo-Euclidean geometry, namely, as closed topological 4-manifolds. The foundation of the hypothesis is a geometrical interpretation of the basic equation of quantum mechanics for classical (not quantized) wave fields -- the Dirac equation for free particle. Such hypothesis does not contradict to any physical laws and experimental facts and gives firstly an opportunity to explain qualitatively within classical notions (geometrical) the so called “paradoxical” properties of quantum particles such as wave-corpuscular duality, appearance of probabilities in the quantum mechanics formalism, spin, EPR-paradox.To demonstrate prospects for suggested geometrical approach the author early attempted to find new dynamic equations other than known quantum-mechanical ones for atomic spectra calculations. In this work above investigation is being continued on a more rigorous basis, representing a new geometrical interpretation of the equation for hydrogen atoms. Results of calculations of ionization potentials for helium atom are in agreement with experimental data.}, year = {2014} }
TY - JOUR T1 - Geometrical Approach in Atomic Physics: Atoms of Hydrogen and Helium AU - Oleg Olkhov Y1 - 2014/10/30 PY - 2014 N1 - https://doi.org/10.11648/j.ajpa.20140205.12 DO - 10.11648/j.ajpa.20140205.12 T2 - American Journal of Physics and Applications JF - American Journal of Physics and Applications JO - American Journal of Physics and Applications SP - 108 EP - 112 PB - Science Publishing Group SN - 2330-4308 UR - https://doi.org/10.11648/j.ajpa.20140205.12 AB - The hypothesis was earlier suggested by the author where all micro-objects are considered as specific distortions of the physical space-time pseudo-Euclidean geometry, namely, as closed topological 4-manifolds. The foundation of the hypothesis is a geometrical interpretation of the basic equation of quantum mechanics for classical (not quantized) wave fields -- the Dirac equation for free particle. Such hypothesis does not contradict to any physical laws and experimental facts and gives firstly an opportunity to explain qualitatively within classical notions (geometrical) the so called “paradoxical” properties of quantum particles such as wave-corpuscular duality, appearance of probabilities in the quantum mechanics formalism, spin, EPR-paradox.To demonstrate prospects for suggested geometrical approach the author early attempted to find new dynamic equations other than known quantum-mechanical ones for atomic spectra calculations. In this work above investigation is being continued on a more rigorous basis, representing a new geometrical interpretation of the equation for hydrogen atoms. Results of calculations of ionization potentials for helium atom are in agreement with experimental data. VL - 2 IS - 5 ER -