In this paper, we found new exact solutions to the Einstein- Maxwell system of equations within the framework of MIT Bag Model considering a particular form for the measure of anisotropy and a gravitational potential which depends on an adjustable parameter α. The first class of solutions has a singularity in the center. The second class of solutions is regular in the stellar interior. Variables as the energy density, radial pressure, tangential pressure, electric field intensity and the metric functions are written in terms of elementary and polinominal functions. We show that the form chosen for the gravitational potential and the anisotropy allows obtain physically acceptable solutions with any value of the adjustable parameter.
Published in |
International Journal of Astrophysics and Space Science (Volume 3, Issue 1-1)
This article belongs to the Special Issue Compact Objects in General Relativity |
DOI | 10.11648/j.ijass.s.2015030101.12 |
Page(s) | 6-12 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Gravitational Potential, Adjustable Parameter, Einstein-Maxwell System, MIT Bag Model, Energy Density, Measure of Anisotropy
[1] | Kuhfitting, P.K.(2011). Some remarks on exact wormhole solutions, Adv. Stud. Theor. Phys., 5, 365- 367 . |
[2] | Bicak, J.(2006). Einstein equations: exact solutions, Encyclopedia of Mathematical Physics, 2, 165-173. |
[3] | Malaver, M. (2013). Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9. |
[4] | Komathiraj, K., and Maharaj,S.D. (2008). Classes of exact Einstein-Maxwell solutions, Gen. Rel. Grav., 39, 2079-2093. |
[5] | Sharma, R., Mukherjee, S and Maharaj, S.D.(2001). General solution for a class of static charged stars, Gen.Rel. Grav., 33, 999-110. |
[6] | Dey, M, Bombaci, I, Dey, J, Ray, S and Samantra, B.C. (1998). Phys. Lett. B438,123. |
[7] | Itoh,N.(1970). Prog. Theor. Phys.44, 291. |
[8] | Schwarzschild, K. (1916). Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit, Math. Phys. Tech, 424-434. |
[9] | Tolman, R.C. (1939). Static Solutions of Einstein's Field Equations for Spheres of Fluid, Phys. Rev., 55, 364-373. |
[10] | Oppenheimer, J.R. and Volkoff, G. (1939). On massive neutron cores, Phys. Rev., 55, 374- 381. |
[11] | Chandrasekhar, S. (1931). Mass of Ideal White Dwarfs, Astrophys. J., 74, 81-82. |
[12] | Baade, W., and Zwicky, F. (1934). Cosmic Rays from Super-Novae, Proc. Nat. Acad. Sci. U. S., (20), 259-263. |
[13] | Komathiraj, K., and Maharaj, S.D.(2007). Analytical models for quark stars, Int.J.Mod. Phys., D16, pp. 1803-1811. |
[14] | Herrera, L., and Santos, N.O. (1997), Phys. Rep.286, 53. |
[15] | Cosenza, M., Herrera, L., Esculpi, M. and Witten, L.(1981), J.Math.Phys., 22(1), 118. |
[16] | Gokhroo, M.K., and Mehra. A.L. (1994). Anisotropic spheres with variable energy density in general relativity, Gen.Relat.Grav., 26(1), 75-84. |
[17] | Herrera, L. (1992), Phys.Lett., A165, 206. |
[18] | Herrera, L. (1992), Phys.Lett., A165, 206. |
[19] | Herrera, L., Ruggeri, G.J and Witten. L. (1979),Astrophys. J., 234, 1094. |
[20] | Herrera, L., and Ponce de Leon. J. (1985), J. Math.Phys., 26, 2018. |
[21] | Herrera, L., and Santos. N.O. (1998), J. Math. Phys., 39, 3817. |
[22] | Bondi.H.(1992), Mon. Not. R. Astron. Soc., 259, 365. |
[23] | Maharaj, S.D., Sunzu, J.M. and Ray, S. (2014). Eur. Phys. J.Plus., 129, 3. |
[24] | Sunzu, J.M, Maharaj, S.D and Ray, S.(2014). Quark star model with charged anisotropic matter, accepted for publication in Astrophysics and Space Science, published online September 25, 2014. DOI: 10.1007/s10509-014-2131-4. |
[25] | Malaver, M. (2009). Análisis comparativo de algunos modelos analíticos para estrellas de quarks, Revista Integración, 27, 125-133. |
[26] | Thirukkanesh, S., and Maharaj, S.D. (2008). Charged anisotropic matter with linear equation of state, Class. Quantum Gravity, 25, 235001. |
[27] | Thirukkanesh, S., and Ragel, F.C. (2013). A class of exact strange quark star model, PRAMANA-Journal of physics, 81(2), 275-286. |
[28] | Feroze, T. and Siddiqui, A. (2011). Charged anisotropic matter with quadratic equation of state, Gen. Rel. Grav., 43, 1025-1035. |
[29] | Malaver, M. (2014). Strange Quark Star Model with Quadratic Equation of State, Frontiers of Mathematics and Its Applications., 1(1), 9-15. |
[30] | Takisa, P.M., and Maharaj, S.D. (2013). Some charged polytropic models, Gen.Rel.Grav., 45, 1951-1969. |
[31] | Malaver, M. (2013). Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal of Astronomy and Astrophysics, 1(4), 41-46. |
[32] | Malaver, M. (2013). Regular model for a quark star with Van der Waals modified equation of state, World Applied Programming., 3, 309-313. |
[33] | Mak, M.K., and Harko, T. (2004). Quark stars admitting a one-parameter group of conformal motions, Int.J.Mod.Phys, D13, 149-156. |
[34] | Malaver, M. (2014). Models for Quark Stars with Charged Anisotropic Matter, Research Journal of Modeling and Simulation, 1(4), 65-71. |
[35] | Durgapal, M.C., and Bannerji, R. (1983). New analytical stellar model in general relativity, Phys.Rev. D27, 328-331. |
APA Style
Manuel Malaver. (2014). New Analytical Solutions for Quark Stars with Charged Anisotropic Matter. International Journal of Astrophysics and Space Science, 3(1-1), 6-12. https://doi.org/10.11648/j.ijass.s.2015030101.12
ACS Style
Manuel Malaver. New Analytical Solutions for Quark Stars with Charged Anisotropic Matter. Int. J. Astrophys. Space Sci. 2014, 3(1-1), 6-12. doi: 10.11648/j.ijass.s.2015030101.12
AMA Style
Manuel Malaver. New Analytical Solutions for Quark Stars with Charged Anisotropic Matter. Int J Astrophys Space Sci. 2014;3(1-1):6-12. doi: 10.11648/j.ijass.s.2015030101.12
@article{10.11648/j.ijass.s.2015030101.12, author = {Manuel Malaver}, title = {New Analytical Solutions for Quark Stars with Charged Anisotropic Matter}, journal = {International Journal of Astrophysics and Space Science}, volume = {3}, number = {1-1}, pages = {6-12}, doi = {10.11648/j.ijass.s.2015030101.12}, url = {https://doi.org/10.11648/j.ijass.s.2015030101.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijass.s.2015030101.12}, abstract = {In this paper, we found new exact solutions to the Einstein- Maxwell system of equations within the framework of MIT Bag Model considering a particular form for the measure of anisotropy and a gravitational potential which depends on an adjustable parameter α. The first class of solutions has a singularity in the center. The second class of solutions is regular in the stellar interior. Variables as the energy density, radial pressure, tangential pressure, electric field intensity and the metric functions are written in terms of elementary and polinominal functions. We show that the form chosen for the gravitational potential and the anisotropy allows obtain physically acceptable solutions with any value of the adjustable parameter.}, year = {2014} }
TY - JOUR T1 - New Analytical Solutions for Quark Stars with Charged Anisotropic Matter AU - Manuel Malaver Y1 - 2014/11/17 PY - 2014 N1 - https://doi.org/10.11648/j.ijass.s.2015030101.12 DO - 10.11648/j.ijass.s.2015030101.12 T2 - International Journal of Astrophysics and Space Science JF - International Journal of Astrophysics and Space Science JO - International Journal of Astrophysics and Space Science SP - 6 EP - 12 PB - Science Publishing Group SN - 2376-7022 UR - https://doi.org/10.11648/j.ijass.s.2015030101.12 AB - In this paper, we found new exact solutions to the Einstein- Maxwell system of equations within the framework of MIT Bag Model considering a particular form for the measure of anisotropy and a gravitational potential which depends on an adjustable parameter α. The first class of solutions has a singularity in the center. The second class of solutions is regular in the stellar interior. Variables as the energy density, radial pressure, tangential pressure, electric field intensity and the metric functions are written in terms of elementary and polinominal functions. We show that the form chosen for the gravitational potential and the anisotropy allows obtain physically acceptable solutions with any value of the adjustable parameter. VL - 3 IS - 1-1 ER -