| Peer-Reviewed

Computation of Electronic Proprieties of the DNA and RNA Bases

Received: 1 October 2014     Accepted: 13 October 2014     Published: 20 October 2014
Views:       Downloads:
Abstract

In this paper the authors report the optimizations of the DNA and RNA bases (adenine, cytosine, thymine, guanine and uracil) for to determine the electronic proprieties and are employed the LSDA/6-31++G, PBE/6-31++G, PBE/LANL2DZ and PBE/SDD levels of theory both in gas phase and in the presence of the solvent water with the actual implementation of the polarized continuum model of Tomasi (PCM). And to provide the IPV, EAV, hardness, dipole moment and electronegativity (χ). The vibrational frequencies are description to purine and pyrimidine bases.

Published in International Journal of Computational and Theoretical Chemistry (Volume 2, Issue 4)
DOI 10.11648/j.ijctc.20140204.11
Page(s) 26-40
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2014. Published by Science Publishing Group

Keywords

Purine and Pyrimidine, Electronic Proprieties, DFT for DNA and RNA

References
[1] Prashant Jain, Pradeep T., Biotecn. andBioing. 2005, 90, 1, pp. 59-63.
[2] Ivan Sondi, Branka S. Sondi, J. Colloidal Interface Science 2004, 275, pp. 177-182.
[3] Russo N., Toscamo M., Grand A., J. Am. Chem. Soc. 2001, 123, pp. 10272.
[4] Shuxi Dai, Xingtang Zhang, Tianfeng Li, et all., Applied Surface Science 2005, 249, 1-4, pp. 346-353.
[5] Famulari A., Moroni F., Sironi M., Gianinetti E., Raimondi M., J. Molec. Struct.(Theochem) 2000, pp. 529, 209.
[6] Ford G.P., Scribner J.D., Chem. Res. Toxicol.1990, 3, pp. 219.
[7] Cardona J.P., Lippard S.J., Gait M.J., Singh M., J. Am. Chem. Soc. 1982, 104, pp. 5793.
[8] Basch H., Krauss M., Stevens W.J., Cohen D., Inorg. Chem. 1986, 25, pp. 684.
[9] Nakayama N., Tanaka S., Kikuchi O., J. Theor. Biol. 2002, 215, pp. 13.
[10] J.R. Wiley, J.M.Robinson, S. Ehdaie, E.C.M. Chen, E.S.D. Chen, W.E. Wentworth, Biochem. Biophys.Res. Comm. 1991, 180, pp. 841.
[11] E.C.M., Chen, E.S.D., W.E. Wentworth, Biochem. Biophys. Res. Commun.1990, 171, 97.
[12] K. Aflatooni, G.A. Gallup, P.D. Burrow, J. Phys. Chem. A. 1998, 102, pp. 6205.
[13] V.M. Orlov, A.N. Smirnov, Ya M. Varshavsky, Tetrahedron Lett. 1976, 17, pp. 4377-4378.
[14] N.S. Hush, S.C. Agnes, Chem. Phys. Lett. 1975, 34, pp. 11.
[15] D.S. Michael, B. Brent, C.A.-Odile, J. Phys. Chem. 1994, 99, pp. 1060.
[16] A.-O. Colson, B. Brent, M.D. Sevilla, J. Phys. Chem. 1993, 97, pp. 13852.
[17] Carlos E. Crespo-Hernández, R. Arce, Y. Ishikawa, L. Gorb, J. Leszczynski, D.M. Close, J. Phys. Chem. A. 2004, 108, pp. 6373-6377
[18] A. Kumar, M.K. Mohammady, P.C. Mishra, S. Suhai, J. Comput. Chem. 2004, 25, pp. 1047.
[19] X Lee, Z. Cai, M.D. Sevilla, J. Phys. Chem A 2002, 106, pp. 9345.
[20] S.S. Wesolowski, M.L. Leininger, P.N. Pentchev, H.F. Schaefer, J. Am. Chem. Soc. 2001, 123, pp. 4023.
[21] S.D. Wetmore, R.J. Boyd, L.A. Enksson, Chem Phys. Lett. 2000, 322, pp. 129.
[22] M.D. Sevilla, B. Bosler, A.O. Colson, J. Phys. Chem. 1995, 99, pp. 1060.
[23] David M. Close, J. Phys. Chem. A. 2004, 108, pp. 10376-10379.
[24] Ulf Norinder, J. Molecular Structure (Theochem) 1987, 151, pp. 259-269.
[25] Preuss M., Schmidt W.G., Seino K., Furthmuller J., Bechstedt F., J. Comput. Chem. 2004, 25, pp. 112.
[26] Fogarasi G., J. Phys. Chem A, 2002, 106, pp. 1381.
[27] Podolyan Y., Rubin Y.V., Leszczynski J., J. Phy.s Chem. A 2000, 104, pp. 9964.
[28] Peter Pulay,Svein S., Massimo M., Jon Baker,J. Comput. Chem. 2005, 26 (6), pp. 599-605.
[29] Xifeng Li, ZhongliCai, Michael D. Sevilla, J. Phys. Chem. A, 2002, 106, pp. 1596-1603.
[30] Attila Szabo, Neil S. Ostlund, “Modern Quantum Chemistry”, Dover Publications, Inc., Mineola, New York, 1996, pp. 212
[31] M. Virginia Popa, Rev. Mex. Fís. 2007, 53(4), pp. 241-253.
[32] Irma N.Kolomietset.al., J. Molec. Struct., 1991, 250(1), pp. 1-11.
[33] Hye-Young H. Kim, M. Cooper, LubomirV.N., Constance M.H. and Thomas M.H., Chem. Res. Toxicol. 2001, 14(9), pp. 1306-1314.
[34] Gareth K. Forde et al., J. Phys. Chem. A, 2006, 110(69), pp. 2308-2313.
[35] Marzili L.G., Kistenmacher and Eichhorn G.L., (Ed. John Wiley Sons, New York, 1980) pp.179.
[36] Fan J-Y Tercel M. and Denny W.A., Anti-Cancer Drug Design 1997, 12(4), pp. 277-293.
[37] J. Schiedt, R. Weinjauf, D.M. Neumark, E.W. Schlang, Chemical Physics 1998, pp. 511-524.
[38] Netmore S.D., Boyd R. J., Enksonn L.A., Chem. Phys. Lett., 322, 129, pp. 1997.
Cite This Article
  • APA Style

    Mariana Virginia Popa. (2014). Computation of Electronic Proprieties of the DNA and RNA Bases. International Journal of Computational and Theoretical Chemistry, 2(4), 26-40. https://doi.org/10.11648/j.ijctc.20140204.11

    Copy | Download

    ACS Style

    Mariana Virginia Popa. Computation of Electronic Proprieties of the DNA and RNA Bases. Int. J. Comput. Theor. Chem. 2014, 2(4), 26-40. doi: 10.11648/j.ijctc.20140204.11

    Copy | Download

    AMA Style

    Mariana Virginia Popa. Computation of Electronic Proprieties of the DNA and RNA Bases. Int J Comput Theor Chem. 2014;2(4):26-40. doi: 10.11648/j.ijctc.20140204.11

    Copy | Download

  • @article{10.11648/j.ijctc.20140204.11,
      author = {Mariana Virginia Popa},
      title = {Computation of Electronic Proprieties of the DNA and RNA Bases},
      journal = {International Journal of Computational and Theoretical Chemistry},
      volume = {2},
      number = {4},
      pages = {26-40},
      doi = {10.11648/j.ijctc.20140204.11},
      url = {https://doi.org/10.11648/j.ijctc.20140204.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijctc.20140204.11},
      abstract = {In this paper the authors report the optimizations of the DNA and RNA bases (adenine, cytosine, thymine, guanine and uracil) for to determine the electronic proprieties and are employed the LSDA/6-31++G, PBE/6-31++G, PBE/LANL2DZ and PBE/SDD levels of theory both in gas phase and in the presence of the solvent water with the actual implementation of the polarized continuum model of Tomasi (PCM). And to provide the IPV, EAV, hardness, dipole moment and electronegativity (χ). The vibrational frequencies are description to purine and pyrimidine bases.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Computation of Electronic Proprieties of the DNA and RNA Bases
    AU  - Mariana Virginia Popa
    Y1  - 2014/10/20
    PY  - 2014
    N1  - https://doi.org/10.11648/j.ijctc.20140204.11
    DO  - 10.11648/j.ijctc.20140204.11
    T2  - International Journal of Computational and Theoretical Chemistry
    JF  - International Journal of Computational and Theoretical Chemistry
    JO  - International Journal of Computational and Theoretical Chemistry
    SP  - 26
    EP  - 40
    PB  - Science Publishing Group
    SN  - 2376-7308
    UR  - https://doi.org/10.11648/j.ijctc.20140204.11
    AB  - In this paper the authors report the optimizations of the DNA and RNA bases (adenine, cytosine, thymine, guanine and uracil) for to determine the electronic proprieties and are employed the LSDA/6-31++G, PBE/6-31++G, PBE/LANL2DZ and PBE/SDD levels of theory both in gas phase and in the presence of the solvent water with the actual implementation of the polarized continuum model of Tomasi (PCM). And to provide the IPV, EAV, hardness, dipole moment and electronegativity (χ). The vibrational frequencies are description to purine and pyrimidine bases.
    VL  - 2
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Electronic and Telecomunication, Autonomous University of the Hidalgo State, Mexico

  • Sections