En this article are presented the theorics work for clarify the structure of all silver cluster and are compareted the results with experimental data for see which levels of theory describe better the propriety of the silver cluster. For Ag2-A5 are reach different value of the bond, ionization potentials and frequencies, electron affinities and biding energy method employed ab initio and relativystic bases. Are optimization with the following levels of theorie: HF/LANL1MB, HF/LANL2MB, HF/LANL2DZ, B3LYP/LANL1MB, B3LYP/LANL2MB, B3LYP/LANL2DZ, MP2/LANL2DZ, DFT/PBE/SDD and DFT/PBE/3-21G**.
Published in | International Journal of Computational and Theoretical Chemistry (Volume 2, Issue 6) |
DOI | 10.11648/j.ijctc.20140206.11 |
Page(s) | 46-68 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Silver, Relativystic Effects, Metal Clusters
[1] | Huda M.N.; Ray A. K.; Phys. Rev. A, 2003, 67, 013210. |
[2] | Fournier R., J. Chem. Phys., 2001, 2165. |
[3] | Wnag B.; Chen X.; Wang J.; Zhao J., Surface Review and Letters, 2004, 11,15. |
[4] | Monti O.L.A.; Fourkas, J.T.;Nesbitt D.J., J. Phys. Chem. B, 2004, 108, 1604. |
[5] | Zhang L.;Yuu J.C., Ho Yin Yip; Li Q.; Kwong K. W.; Xu A. Wu; Wong Po K.; Langmuir, 2003, 19, 10372. |
[6] | Yuranava T.; Rincon A.G.; Bozzi A.G.; Parra S.; Pulgarin C.; Albers P.; Kiwi J., J. Photochem, Photobiol.A., 2003, 161, 27. |
[7] | Empedocles; Neuhauser R.; Shimizu K.; Bawendi M.G., Adv. Mater., 1999, 11, 1243. |
[8] | Link S.; El-Sayed , Int Rev. Phys. Chem., 2000, 19, 409. |
[9] | Andersen P.C.; Rowlen K.L., Appl. Spectroscop., 2002, 56, 124 A. |
[10] | Henglein A., Chem. Rev. 1989, 89, 1861. |
[11] | Kim S.H.; Ribeiro G.M.; Ohlberg D.A.A.; Williams R.S., Heath J.R., J.Phys. Chem., 1999, 103, 10341. |
[12] | Zuhuang J., Bactericidal nanosilver cloth and its making proces and use. Patent number CN 1387700, 2003. |
[13] | Chen C.M.S., Process for preparing antibacterial antimildew polyacrylic fibers and its filter net for air condiyioner. Patent number CN 1355335, 2003. |
[14] | Lee H.J.; Yeo .S.Y.; Jeong, J. Mat. Sci., 2003,38, 2199. |
[15] | Balasubramanian K., J. Phys. Chem., 1989, 93, 6585. |
[16] | Ichihara K.T.; Fujita Y.;Matsuo T., Sakuray T.; Matsuda H., Int. J. Mass, Spectrom. In. Proc., 1985, 67, 229; ibid. 1986, 74, 33. |
[17] | Handschuh H.; Cha C.Y.; Bechthold P.S.; Ganteför, Eberhatdt W., J. Chem. Phys., 1995, 102, 6406. |
[18] | Haslett T.L.; Bosnick K.A.; Fedrigo S.; Moskovits M., J. Chem. 1999, 11, 14, 6456, |
[19] | Wedum E.E.; Grant E.R.; Cheng P.Y.; Willy K.F.; Duncan M.A., J. Chem. Phys. Lett., 1991, 100, 6312. |
[20] | Félix C.; Sieber C.; Harbich W.; Buttet J.; Rabin I.; Schultze W. Ertl, Chem. Phys. Lett., 1999, 313, 195. |
[21] | Howard J.A.; Sutcliffe R.; Mile B., Surf. Sci., 1985, 156, 214. |
[22] | Haslett T.L.; Bosnick K.A.; Moskovits M., J. Chem. Phys., 1998, 108, 3453. |
[23] | Rabin I.; Jackschath C.; Schultze W., Z. Phys. D, 1991, 19, 153. Jackschath, Rabin I.; Schultze W., ibid, 1992, 22, 517. |
[24] | Allameddin G.; Hunter J., Cameron D.; Kappes M.M., Chem. Phys. Lett, 1992, 192, 122. |
[25] | Ho J.; Ervin K.M.; Lineberger, J. Chem. Phys. 1990, 93, 6987. |
[26] | Leopold, D.G.; Ho J.; Leneberger W.C., J. Chem. Phys., 1987, 86, 1715. |
[27] | Taylor K.J., Pettiette-Hall C.L.; Cheshnovsky O.; Smalley, J. Chem. Phys., 1992, 96, 3319. |
[28] | Handuschu H.; Chaa C. Y.; Bechtold P.S., Ganteför G.; Eberhatdt, J. Chem. Phys., 1995, 102, 6406. |
[29] | Okazaki T.; Saito Y., Kasuya A., Nishina Y., J. Chem. Phys., 1996, 104, 812. |
[30] | Tiggesbäumeker T.; Köller L., Meiwes-Broer K.; Liebesch A., Phys. Rev. A, 1993, 48, 1749. |
[31] | Minemoto, Iseda M., Kondow T., Eur. Phys. J.D., 1999, 9, 163. |
[32] | Bonačič Koutecký V.; Češpiva; Fantucci P.; Pittner J.; Koutecký J., J. Chem. Phys., 1994, 100, 1. |
[33] | Santamaria R.; Kaplan I. G.; Novaro O.; Chem. Phys. Letters, 1994, 218, 395. |
[34] | Liu Z.F.; Yim W.L.; Tse J.S.; Hafner J., Eur. Phys. J.D., 2000, 10,105. |
[35] | Zhao J.; Luo Y.; Wang Eur. Phys., J. D, 2001, 14, 309. |
[36] | Legge Sue F., Nyberg Graeme L., Peel Barrie J., J. Phys. Chem A, 2001, 105, 7905. |
[37] | Weis P.; Bierweiler T.; Gilb S.; Kappes M.M., Chem Phys. Lett., 2002, 355, 355. |
[38] | Mitrić, Hartmann M.; Stanca B.; Bonačič Koutecký V.; Fantucci, J. Phys. Chem., 2001, A 105, 8892. |
[39] | Poteau R.; Heully J.L.; Spiegelman F.; Z. Phys. D, 1997, 49, 479. |
[40] | Tian Z.M., Tian Y.; Wei W.M.; He T.J.; Chen D.M.; Liu F.C., Chem. Phis. Lett, 2006, 420, 450. |
[41] | Wedum E.E., Grant E.R., Chang P.Y.; Willey K.F.; Duncan M.A., J. Chem. Phys., 1994,100. |
[42] | Cheng P.Y.; Duncan M.A., Chem Phys. Lett., 1988, 152, 341. |
[43] | Ellis M.; Robles E.S.J., Millar I.A., Chem Phys. Letter.,1993, 201 132. |
[44] | Bonačič Koutecký V.; Veyeret V.; Mitric R., J. Chem. Phys., 2001, 115, 10450. |
[45] | Hay P.J.; Wadt W.R., J. Chem. Phys., 1985, 82, 284. |
[46] | Hay P.J.; Wadt W.R., J. Chem. Phys., 1985, 82, 299. |
[47] | Boo D. Wan; Ozaki Y.; Andersen L. H.; Lineberger W.C., J. Phys. Chem A., 1997, 101, 6688. |
[48] | Ho J.; Ervin K.M., Lienberger W.C., J. Chem. Phys. 1990, 93, 6987. |
[49] | Bagatur'yants A.A.; Safanov A.A., Stoll H.; Werner H.J., J. Chem. Phys., 1998, 109, 3096. |
[50] | Boo Wan D., Ozaki Y., Andersen L. H.; Lineberger W.C., J. Phys. Chem A., 1997, 101, 6688. |
[51] | Schultze W.; Becker H.U.; Minkwitz R.; Mansel K., Chem. Phys. Letters, 1978, 55, 59. |
[52] | Moskowits M., DiLella D.P., J. Chem. Phys., 1980, 72, 2267. |
[53] | Joward J.A.; Preston K.F.; J. Am. Chem. Soc. 1981, 103, 6226. |
[54] | Kernisant K., Thompson G.A., Lindsay D.M., J. Chem. Phys., 1985, 82, 4739. |
[55] | Morse M.D., Chem. Rev. 1986, 86, 1049. |
[56] | Bonačić-Koutecký V.; Češpiva L., J. Chem. Phys., 1993, 98, 7981. |
[57] | Basch H., J. Am. Chem. Soc., 1981, 103, 4657. |
[58] | Matulis V.E; Ivashkevich O.A.; Gurin V.S, J. Molec. Struct. (Theochem), 2003, 664-665, 291. |
[59] | Häkkinen H.; Moseler M.; Landman Uzi, Physical Rev. Lett., 2002, 89, 033401-1. |
[60] | Huda M.N.; Ray A.K., Eur. Phys. J. D, 2003, 22, 217. |
[61] | Boo Wan D.; Ozaki Y, Andersen L. H.; Lineberger W.C, J. Phys. Chem A., 1997, 101, 6688. |
[62] | Spasov V.A., Lee T.H. ; Maberry J.P. ; Ervin K.M., J. Chem. Phys., 1999, 110, 5208, |
[63] | Shi Y., Spasov V.A., Ervin K.M., J. Chem. Phys., 1999, 111, 938. |
[64] | Moore C.E., Atomic energy levels, NSRDS-NBS Circular No. 467, USGPO,Washington, 1949. |
[65] | Zuhuang J., Bactericidal nano-silver cloth and its making process and use. Patent number CN 1387700, 2003. |
[66] | Rabin I., Jackschath C.; Schulze W., Z. Phys. D, 1991, 19, 153,. Jackschath C., Rabin I.; Schulze W., ibid. 1992, 22, 517. |
[67] | Ekardt W., Phys. Rev. B, 1984, 29, 1558. |
[68] | C.E. Moore, Atomic energy levels, NSRDS-NBS Circular No. 467, USGPO, Washington, 1949. |
[69] | Foresman J.B., Frisch A., Gaussian, Inc. Pittsburgh, PA, 230-249, 1996. |
APA Style
Mariana Virginia Popa. (2014). The Electronic Proprieties of the Silver Clusters. International Journal of Computational and Theoretical Chemistry, 2(6), 46-68. https://doi.org/10.11648/j.ijctc.20140206.11
ACS Style
Mariana Virginia Popa. The Electronic Proprieties of the Silver Clusters. Int. J. Comput. Theor. Chem. 2014, 2(6), 46-68. doi: 10.11648/j.ijctc.20140206.11
@article{10.11648/j.ijctc.20140206.11, author = {Mariana Virginia Popa}, title = {The Electronic Proprieties of the Silver Clusters}, journal = {International Journal of Computational and Theoretical Chemistry}, volume = {2}, number = {6}, pages = {46-68}, doi = {10.11648/j.ijctc.20140206.11}, url = {https://doi.org/10.11648/j.ijctc.20140206.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijctc.20140206.11}, abstract = {En this article are presented the theorics work for clarify the structure of all silver cluster and are compareted the results with experimental data for see which levels of theory describe better the propriety of the silver cluster. For Ag2-A5 are reach different value of the bond, ionization potentials and frequencies, electron affinities and biding energy method employed ab initio and relativystic bases. Are optimization with the following levels of theorie: HF/LANL1MB, HF/LANL2MB, HF/LANL2DZ, B3LYP/LANL1MB, B3LYP/LANL2MB, B3LYP/LANL2DZ, MP2/LANL2DZ, DFT/PBE/SDD and DFT/PBE/3-21G**.}, year = {2014} }
TY - JOUR T1 - The Electronic Proprieties of the Silver Clusters AU - Mariana Virginia Popa Y1 - 2014/12/22 PY - 2014 N1 - https://doi.org/10.11648/j.ijctc.20140206.11 DO - 10.11648/j.ijctc.20140206.11 T2 - International Journal of Computational and Theoretical Chemistry JF - International Journal of Computational and Theoretical Chemistry JO - International Journal of Computational and Theoretical Chemistry SP - 46 EP - 68 PB - Science Publishing Group SN - 2376-7308 UR - https://doi.org/10.11648/j.ijctc.20140206.11 AB - En this article are presented the theorics work for clarify the structure of all silver cluster and are compareted the results with experimental data for see which levels of theory describe better the propriety of the silver cluster. For Ag2-A5 are reach different value of the bond, ionization potentials and frequencies, electron affinities and biding energy method employed ab initio and relativystic bases. Are optimization with the following levels of theorie: HF/LANL1MB, HF/LANL2MB, HF/LANL2DZ, B3LYP/LANL1MB, B3LYP/LANL2MB, B3LYP/LANL2DZ, MP2/LANL2DZ, DFT/PBE/SDD and DFT/PBE/3-21G**. VL - 2 IS - 6 ER -