Nanotechnology is an emerging field of science and technology with numerous applications in biomedical fields and manufacturing new materials. To extract gold nanoparticles with different techniques, green biosynthesis is in under exploration due to its cost effective ecofriendly preparation with controllable shape, size and disparity, tremendous physical and chemical inertness, optical properties related with surface plasmon resonance, surface modification, surface bio-conjugation with molecular probes, excellent biocompatibility and less toxicity. This review article presents the overview of green biosynthesis of gold nanoparticles (AuNP) and their recent biomedical applications.
Published in |
American Journal of Nano Research and Applications (Volume 2, Issue 6-2)
This article belongs to the Special Issue Nanomaterials and Its Applications |
DOI | 10.11648/j.nano.s.2014020602.12 |
Page(s) | 5-12 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Biosynthesis, Gold Nanoparticles (AuNP), Biomedical Applications
[1] | R. Raghavendra, K. Arunachalam, S. K. Annamalai and A. M. Arunachalam, “Diagonistics and therapeutic application of gold nanoparticles,” International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 6, pp. 74-87, 2014. |
[2] | J. Siemieniec and P. Kruk, “Synthesis of silver and gold nanoparticles using method of green chemistry,” CHEMIK, Vol. 67, pp. 842-847, 2013. |
[3] | W. Cai, T. Gao, H. Hong and J. Sun, “Applications of gold nanoparticles in cancer nanotechnology,” Nanotechnology, Science and Applications, Vol. 1, pp. 17–32, 2008. |
[4] | H. Liao, C. L. Nehl and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine, Vol. 1(2), pp. 201-208, 2006. |
[5] | J. J. Diao and Q. Cao, “Gold nanoparticle wire and integrated wire array for electronic detection of chemical and biological molecules,” AIP Advances, Vol. 1, pp. 012115-1-012115-5, 2011. |
[6] | E. Hutter and D. Maysinger, “Gold nanoparticles and quantum dots for bioimaging,” Microscopy Research and Technique, Vol. 74, pp. 592-604, 2011. |
[7] | G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner and F. R. Aussenegg, “Plasmon dispersion relation of Au and Ag nanowires,” Physical Review B, Vol. 68, pp. 155427-1-155427-4, 2003. |
[8] | X. Lou, Z. Yi, J. Qin and Z. Li, “A highly sensitive and selective fluorescent probe for cyanide based on the dissolution of gold nanoparticles and its application in real samples,” Chemistry-A European Journal, Vol. 17, pp. 9691-9696, 2011. |
[9] | P. Yanez-Sedenoand J. M. Pingarron, “Gold nanoparticle-based electrochemical biosensors,” Analytical and Bioanalytical Chemistry, Vol. 382, pp. 884-886, 2005. |
[10] | C. D. Gaddes, A. Perfenov, I. Gryczynski and J. R. Lakowicz, “Luminescent blinking of gold nanoparticles,” Chemical Physics Letters, Vol. 380, pp. 269-272, 2003. |
[11] | M. A. Hayat, (Ed.), “Colloidal Gold: Principles, Methods and Applications,” San Diego, CA: Academic Press, Vols. 1 and 2, 1989. |
[12] | J. Turkevich and P. H. J. Stevenson, A study of nucleation and growth process in the synthesis of colloidal gold,” Discuss. Faraday Soc., Vol. 11, pp. 55-75, 1951. |
[13] | M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system,” J. Chem. Soc. Chem. Commun., issue-7 pp. 801-808, 1994. DOI: 10.1039/C39940000801. |
[14] | L. O. Brown, and J. E. Hutchison, “Convenient preparation of stable, narrow-dispersity, gold nanocrystals by ligand exchange reactions,” J. Am. Chem. Soc., Vol. 119, pp. 12384-12385, 1997. |
[15] | M. Brust, J. Fink, D. Bethell, D. J. Schiffrin and C. J. Kiely, “Synthesis and reactions of functionalised gold nanoparticles,” J. Chem. Soc. Chem. Commun., pp. 1655–1656, 1995. DOI: 10.1039/C39950001655. |
[16] | M. J. Hostetler, S. J. Green, J. J. Stokes, and R. W. Murray, “Monolayers in Three Dimensions: Synthesis and Electrochemistry of ω-Functionalized Alkanethiolate-Stabilized Gold Cluster Compounds,” Am. Chem. Soc., Vol. 118, pp. 4212-4213, 1996. |
[17] | R. S. Ingram, M. J. Hostetler and R. W. J. Murray, “Poly-hetero-ω-functionalized Alkanethiolate-Stabilized Gold Cluster Compounds,” Am. Chem. Soc., Vol. 119, pp. 9175-1978, 1997. |
[18] | X. Li, H. Xu, Z-S. Chen and G. Chen, “Biosynthesis of nanoparticles by microorganism and their application,” Journal of nanomaterials, Vol. 2011, 2011. Doi:10.1155/2011/270974. |
[19] | D. S. Goodsell, Editor, “Bionanotechnology: Lessons from Nature,” John Wiley & Sons Inc. Publication, 2004. |
[20] | S. Guo and E. Wang, “Synthesis and electrochemical applications of gold nanoparticles,” Analytica Chimica Acta, Vol. 598, pp. 181-192, 2007. |
[21] | A. R. Sperling, R. P. Gil, F. Zhang, M. Zanella and J. W. Parak, “Biological applications of gold nanoparticles,” Chemical Society Reviews, Vol. 37, pp. 1896-1908, 2008. |
[22] | J. A. Ho, H. C. Chang, N. Y. Shih, L-C. Wu, Y-F. Chang, C-C. Chen and C. Chou, “Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical immunosensor,” Anal. Chem., Vol. 82(14), pp. 5944–5950, 2010. |
[23] | E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Rev., Vol. 38, pp. 1759–1782, 2009. |
[24] | Y. Konishi, T. Tsukiyama, K. Ohno, N. Saitoh, T. Nomura and S. Nagamine, “Intracellular recovery of gold by microbial reduction of AuCl4 ions using the anaerobic bacterium Shewanella algae,” Hydrometallurgy, Vol. 81(1), pp. 24–29, 2006. |
[25] | E. Castro-Longoria, A. R. Vilchis-Nestor and M. Avalos-Borja, “Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurosporacrassa,” Colloids and Surfaces B, Vol. 83(1), pp. 42–48, 2011. |
[26] | S. S. Shankar, A. Rai, A. Ahmad and M.S astry, “Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachtaindica) leaf broth,” Journal of Colloid and Interface Science, Vol. 275, pp. 496-502, 2004. |
[27] | J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, and C. Chen, “Biosynthesis of silver and gold nanoparticles by novel sun dried Cinnamomumcamphora leaf,” Nanotechnology, Vol. 18, p. 105104, 2007. |
[28] | J. L. Gardea-Torresdey, J. G. Parsons, E. Gomez, J. Peralta-Videa, H. E. Troiani, P. Santiago, and M. Jose Yacaman, “Formation and growth of Au nanoparticles inside live Alfalfa plants,” Nano Letters, Vol. 2, pp. 397-401, 2002. |
[29] | A. D. Dwivedi and K. Gopal, “Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract,” Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 369, pp. 27-33, 2010. |
[30] | S. S. Shankar, A. Ahmad, R. Pasrichaa and M. Sastry, “Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes,” J. Mater. Chem., Vol. 13, pp. 1822–1826, 2003. |
[31] | S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmed and M. Sastry, “Biological synthesis of triangular gold nanoprisms,” Nat. Mater., Vol. 3, pp. 482-488, 2004. |
[32] | S. S. Shankar, A. Rai, A. Ahmed and M. Sastry, “Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings,” Chem. Mater., Vol. 17, pp. 566-572, 2005. |
[33] | V. Armendariz, I. Herrera, R. Jose, P. Videa, M. J. Yacaman, H. Troiani, P. Santiago, L. Jorge and L. Gardea-Torresdey, “Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology,” J. Nanopart. Res., Vol. 6, pp. 377-382, 2004. |
[34] | K. Ghule, A. V. Ghule, J. Y. Liu and Y. C. Ling, “Microscale size triangular gold prisms synthesized using Bengal gram beans (Cicerarietinum L.) extract and HAuCl4x3H20: a green biogenic approach,” J. Nanosci. Nanotechnol., Vol. 6, pp. 3746–3751, 2006. |
[35] | K. Badrinarayanan and N. Sakthivel, “Coriander leaf mediated biosynthesis of gold nanoparticles,” Mater. Lett., Vol. 62, pp. 4588-4590, 2008. |
[36] | B. Nair and T. Pradeep, “Coalescence of nanoclusters and formation of submicron crystallites Assisted by Lactobacillus Strains,” Crystal Growth and Design, Vol. 2(4), pp. 293-298, 2002. |
[37] | T. K-Joerger, R. Joerjer, E. Olsson and Cl-G. Granqvist, “Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science,” Trends in Biotechnology, Vol. 19, pp. 15-20, 2001. |
[38] | V. Armendariz, J. G. Parsons, M. L. Lopez, J. R. Peralta-Videa, M. J. Yacaman, and J. L. Gardea-Torresdey, “The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by X-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV-visible spectroscopy,” Nanotechnology, Vol. 20(10), pp. 105607, 2009. |
[39] | D. Inbakandan, R. Venkatesan and S. Ajmal Khan, “Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongate (Dendy, 1905),” Colloids. Surf. B, Vol. 81, pp. 634-639, 2010. |
[40] | T. Elavazhagan and K. D. Arunachalam, “Memecylonedule leaf extract mediated green synthesis of silver and gold nanoparticles,” International Journal of Nanomedicine, Vol. 6, pp. 1265-1278, 2011. |
[41] | K. D. Arunachalam, S. K. Annamalai and S. Hari, “One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylonumbellatum,” International Journal of Nanomedicine, Vol. 8, pp. 1307-1315, 2013. |
[42] | A. Yasmin, K. Ramesh and S. Rajeshkumar, “Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating,” Nano Convergence, Vol. 1, p. 12, 2014. |
[43] | M. F. Lengke, M. E. Fleet and G. Southam, “Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)−thiosulfate and gold (III)−chloride complexes,” Langmuir, Vol. 22(6), pp. 2780–2787, 2006. |
[44] | G. Singaravelu, J. S. Arockiamary, V. G. Kumar and K. Govindaraju, “A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, SargassumwightiiGreville,” Colloids and Surfaces B, Vol. 57(1), pp. 97–101, 2007. |
[45] | M. Agnihotri, S. Joshi, A. R. Kumar, S. Zinjarde and S. Kulkarni, “Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowialipolytica NCIM 3589,” Materials Letters, Vol. 63 (15), pp.1231–1234, 2009. |
[46] | A. K. Suresh, D. A. Pelletier, W. Wang, M. L. Broich, J. W. Moon, B. Gu, D. P. Allison, D. C. Joy, T. J. Phelps and M. J. Doktycz, “Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanellaoneidensis,” Acta Biomaterialia, Vol. 7(5), pp. 2148–2152, 2011. |
[47] | M. M. Juibari, S. Abbasalizadeh, G. S. Jouzani and M. Noruzi, “Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain,” Materials Letters, Vol. 65(6), pp. 1014–1017, 2011. |
[48] | N. Sharma, A. K. Pinnaka, M. Raje, F. N. U. Ashis, M. S. Bhattacharyya and A. R. Choudhury, “Exploitation of marine bacteria for production of gold nanoparticles,” Microbial Cell Factories, Vol. 11, p. 86, 2012. |
[49] | S. R. Radhika Rajasree and T. Y. Suman, “Extracellular biosynthesis of gold nanoparticles using a gram negative bacterium Pseudomonas fluorescence,” Asian Pacific Journal of Tropical Disease, pp. S795-S799, 2012. |
[50] | Z. Sadowski, “Biosynthesis and application of silver and gold nanoparticles,” Edited Book “Silver Nanoparticles”, Editor – D. P. Perez, Chapter-13, InTech Open Access Publisher, pp. 257-276 (2010). |
[51] | V. Armendariz, J. L.Gardea-Torresdey, M. Jose-Yacaman, J. Gonzalez, I. Herrera and J. G. Parsons, “Gold nanoparticles formation by oat and wheat biomasses,” in Proceedings –Waste Research Technology Conference at the Kansas City, Mariott-Country Club Plaza, July 30–Aug 1, (2002). |
[52] | A. Singh, M. Chaudhary and M. Sastry, “Construction of conductivemultilayer films of biogenic triangular gold nanoparticles and their application in chemical vapour sensing,” Nanotechnology, Vol. 17, pp. 2399–2405, 2006. |
[53] | J. Liuand Y. Lu, “Colorimetric biosensors based on DNA zyme-assembled gold nanoparticles,” J. Fluoresc., Vol. 14, pp. 343–354, 2004. |
[54] | D. Andreeva, “Low temperaturewater gas shift over gold catalysts,” Gold Bull., Vol. 35, pp. 82–88, 2002. |
[55] | R. Grisel, K. J. Weststrate, A. Gluhoi and B. E. Nieuwenhuys, “Catalysis by gold nanoparticles,” Gold Bull., Vol. 35, pp. 39–45, 2002. |
[56] | G. J. Hutchings and M. Haruta, “A golden age of catalysis: a perspective,” Appl. Catal. A, Vol. 291, pp. 2–5, 2005. |
[57] | V. Kuamr and S. K. Yadav, “Plant-mediated synthesis of silver and gold nanoparticles and their applications,” J. Chem. Technol. Biotechnol., Vol. 84, pp. 151-157, 2009. |
[58] | R. Groning, J. Breitkreutz, V. Baroth and R. S. Muller, “Nanoparticles in plant extracts: factors which influence the formation of nanoparticles in black tea infusions,” Pharmazie, Vol. 56, pp. 790–792, 2001. |
[59] | D. Tang, R. Yuan and Y. Chai, “Ligand-functionalized core-shell Ag–Au nanoparticles label-free amperometricimmun-biosensor,” Biotechnol. Bioeng.,Vol. 94, pp. 996–1004, 2006. |
[60] | G. F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R. E. McLaughlin and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Deliv., Vol. 11, pp. 169–183, 2004. |
[61] | D. Zheng, C. Hu, T. Gan, X. Dang and S. Hu, “Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles,” Sensors and Actuators B: Chemical, Vol. 148 (1), pp. 247-252, 2010. |
[62] | P. Zhang, X. Zhang, S. Zhang, X. Lu, Q. Li, Z. Su and G. Wei, “One-pot green synthesis, characterizations, and biosensor application of self-assembled reduced graphene oxide–gold nanoparticle hybrid,” Journal of Materials Chemistry B, Vol. 1, pp. 6525-6531, 2013. |
[63] | Y. Hua, S. Huab, F. Lia, Y. Jianga, X. Baib, D. Lib and L. Niua, “Green-synthesized gold nanoparticles decorated graphene sheets for label-free electrochemical impedance DNA hybridization biosensing,” Biosensors and Bioelectronics, Vol. 26(11), pp. 4355-4361, 2011. |
[64] | P. Kuppusamy, M. M. Yusoff, G. P. Maniam and N. Govindan, “Biosynthesized gold nanoparticle developed as a tool for detection of HCG hormone in pregnant women urine sample” 1st International Conference on Molecular Diagnostic and Biomarker Discovery/Asian Pac. J. Trop. Dis., Vol. 4(3), pp. 223-252, 2014. |
[65] | A. Syed, R. Raja, G. C. Kundu, S. Gambhir and A. Ahmad, “Extracellular biosynthesis of monodispersed gold nanoparticles, their characterization, cytotoxicity assay, biodistribution and conjugation with the anticancer drug doxorubicin,” Nanomedicine & Nanotechnology, Vol. 4(1), p. 156, 2013. http://dx.doi.org/10.4172/2157-7439.1000155. |
[66] | S. Malathi, M. D. Balakumaran, P. T. Kalaichelvan and S. Balasubramanian, “Green synthesis of gold nanoparticles for controlled delivery,” Advanced Materials Letters, Vol. 4(12), pp. 933-940, 2013. |
[67] | S. Fazal, A. Jayasree, S. Sasidharan, M. Koyakutty, S. V. Nair and D. Menon, “Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer,” ACS Appl. Mater. & Interfaces, Vol. 6(11), pp. 8080-8089, 2014. |
[68] | C. Krishnaraj, P. Muthukumaran, R. Ramachandran, M. D. Balakumaran and P. T. Kalaichelvan, “Acalyphaindica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells,” Biotechnology Reports, Vol. 4, pp. 42-49, 2014. |
[69] | E. Hamppa, R. Botaha, O. S. Odusanyaa, N. Anukua, K. A. Malatestaa and W. O. Soboyejo, “Biosynthesis and adhesion of gold nanoparticles for breast cancer detection and treatment,” Journal of Materials Research, Vol. 27(22), pp. 2891-2901, 2012. |
[70] | G. A. Craig, P. J. Allen and M. D. Mason, “Synthesis, characterization, and functionalization of gold nanoparticles for cancer imaging,” Methods Mol. Biol., Vol. 624, pp. 177-193, 2010. |
[71] | S. Mukherjee, B. Vinothkumar, S. Prashanthi, P. R. Bangal, B. Sreedharb and C. R. Patra, “Potential therapeutic and diagnostic applications of one-step in situ biosynthesized gold nanoconjugates (2-in-1 system) in cancer treatment,” RSC Advances, Vol. 3, pp. 2318-2329, 2013. |
[72] | L. Xiang, W. Bin, J. Huali, J. Wei, T. Jiesheng, G. Feng and L. Ying, “Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system,” J. Gene Med., Vol. 9(8), pp. 679-90, 2007. |
[73] | R. Hergta, R. Hiergeista, M. Zeisbergera, D. Schülerb, U. Heyenb, I. Hilgerc and W. A. Kaiserc, “Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools,” Journal of Magnetism and Magnetic Materials, Vol. 293, pp. 80–86, 2005. |
[74] | R. Hergt and S. Dutz, “Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy,” Journal of Magnetism and Magnetic Materials, Vol. 311, pp. 187–192, 2007. |
APA Style
Tuhin Subhra Santra, Fan-Gang Tseng, Tarun Kumar Barik. (2015). Green Biosynthesis of Gold Nanoparticles and Biomedical Applications. American Journal of Nano Research and Applications, 2(6-2), 5-12. https://doi.org/10.11648/j.nano.s.2014020602.12
ACS Style
Tuhin Subhra Santra; Fan-Gang Tseng; Tarun Kumar Barik. Green Biosynthesis of Gold Nanoparticles and Biomedical Applications. Am. J. Nano Res. Appl. 2015, 2(6-2), 5-12. doi: 10.11648/j.nano.s.2014020602.12
@article{10.11648/j.nano.s.2014020602.12, author = {Tuhin Subhra Santra and Fan-Gang Tseng and Tarun Kumar Barik}, title = {Green Biosynthesis of Gold Nanoparticles and Biomedical Applications}, journal = {American Journal of Nano Research and Applications}, volume = {2}, number = {6-2}, pages = {5-12}, doi = {10.11648/j.nano.s.2014020602.12}, url = {https://doi.org/10.11648/j.nano.s.2014020602.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.nano.s.2014020602.12}, abstract = {Nanotechnology is an emerging field of science and technology with numerous applications in biomedical fields and manufacturing new materials. To extract gold nanoparticles with different techniques, green biosynthesis is in under exploration due to its cost effective ecofriendly preparation with controllable shape, size and disparity, tremendous physical and chemical inertness, optical properties related with surface plasmon resonance, surface modification, surface bio-conjugation with molecular probes, excellent biocompatibility and less toxicity. This review article presents the overview of green biosynthesis of gold nanoparticles (AuNP) and their recent biomedical applications.}, year = {2015} }
TY - JOUR T1 - Green Biosynthesis of Gold Nanoparticles and Biomedical Applications AU - Tuhin Subhra Santra AU - Fan-Gang Tseng AU - Tarun Kumar Barik Y1 - 2015/01/08 PY - 2015 N1 - https://doi.org/10.11648/j.nano.s.2014020602.12 DO - 10.11648/j.nano.s.2014020602.12 T2 - American Journal of Nano Research and Applications JF - American Journal of Nano Research and Applications JO - American Journal of Nano Research and Applications SP - 5 EP - 12 PB - Science Publishing Group SN - 2575-3738 UR - https://doi.org/10.11648/j.nano.s.2014020602.12 AB - Nanotechnology is an emerging field of science and technology with numerous applications in biomedical fields and manufacturing new materials. To extract gold nanoparticles with different techniques, green biosynthesis is in under exploration due to its cost effective ecofriendly preparation with controllable shape, size and disparity, tremendous physical and chemical inertness, optical properties related with surface plasmon resonance, surface modification, surface bio-conjugation with molecular probes, excellent biocompatibility and less toxicity. This review article presents the overview of green biosynthesis of gold nanoparticles (AuNP) and their recent biomedical applications. VL - 2 IS - 6-2 ER -