This paper is based on the idea of adaptation under which we mean the replacement of one element in a system with another with similar aspects. The first adaptation comes from the replacement of orthophospheric acid H3PO4 by arsenious acid H3AsO4. There is a close relation between calcium-sulfate and calcium carbonate-arsenate species. The main objective of this note is to give an explicit formula for the ratio of each arsenal species to the total and to make an adaptation of the former by the latter to develop a new adsorption material of arsenic acid which spends almost no energy. Some recently proposed methods of using calcium sulphate or other material has ambivalent aspects regarding energy spending as well as the treatment after adsorption.
Published in |
Pure and Applied Mathematics Journal (Volume 4, Issue 2-1)
This article belongs to the Special Issue Abridging over Troubled Water---Scientific Foundation of Engineering Subjects |
DOI | 10.11648/j.pamj.s.2015040201.19 |
Page(s) | 47-54 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Arsenate, Adsorption, Acidity (pH), Water Treatment
[1] | M. Ando, Arsenic contaminate of ground water in India and Bangladesh and its health effect, J. Nat. Inst. Public Health 49 (3) (2000), 266-274. |
[2] | L. R. Brunson and D. A. Sabatini, Fluoride removal technology for emerging regions, Environ. Engrg Sci. 26 (12) (2009), 1777-1784. |
[3] | S. Chen, R.S. Dzeng, M. Yang, K. Chlu, G. Shlen,and M. C. Wal, Arsenic species in ground waters of the black foot disease area Taiwan, Taiwan. Environ. Sci. Tech. 28 (1994), 877-881. |
[4] | R. Garai, A. K. Chakraborty, S. B. Dey et al., Chronic arsenic poisoning from tube-well water, J. Indian Med. Assoc. 82 (1984), 34-35. |
[5] | S. GoldBerg and R. A. Glanbig, Anion sorption on a calcareous, montmorillonitic soil-arsenic, Soil Sci. Am. J. 52 (1988), 1297-1300. |
[6] | H. Kondo, Basic study on the removal of harmful metalic objects including arsenate from polluted underground water, Doctoral thesis, Kyushu Univ. 1969. |
[7] | H. Kondo, An outline of arsenic pollution of ground waters in the southern area of Fukuoka Prefecture, Japan Soc. Water Environ. 20 (7) (1997), 438-442. |
[8] | D. H. Moon, K, W. Kim and I. H. Yoon et al, Stabilization of arsenic-contaminated mine tailings using natural and calcined oyster shells, Environ. Earth Sci. 64 (9) (2011), 597-605. |
[9] | H. Nishioka, T. Uchida, K. Uchida, T. Yazawa and T. Amako, Optimization of conditions for heat treatment of oyster shells which improves the adsorption rate of ions that give load on environment, J. Soc. Industr. Wastes, Resources Recycling, 22 (2011), 276-283. |
[10] | T. Tsunematsu, E. Uematsu, K. Saito and H. Tamura, Anti-dissolvation of naturally existing arsenate species by addition of gypsum powder and its mechanism, Rep. Agr. Rural Industr. 80 (2012), 141-150. |
APA Style
Sainyam Galhotra, Shigeru Kanemitsu, Hiroyuki Kondo. (2015). An Adaptation Method for Removing Arsenate Species from Water Solution. Pure and Applied Mathematics Journal, 4(2-1), 47-54. https://doi.org/10.11648/j.pamj.s.2015040201.19
ACS Style
Sainyam Galhotra; Shigeru Kanemitsu; Hiroyuki Kondo. An Adaptation Method for Removing Arsenate Species from Water Solution. Pure Appl. Math. J. 2015, 4(2-1), 47-54. doi: 10.11648/j.pamj.s.2015040201.19
AMA Style
Sainyam Galhotra, Shigeru Kanemitsu, Hiroyuki Kondo. An Adaptation Method for Removing Arsenate Species from Water Solution. Pure Appl Math J. 2015;4(2-1):47-54. doi: 10.11648/j.pamj.s.2015040201.19
@article{10.11648/j.pamj.s.2015040201.19, author = {Sainyam Galhotra and Shigeru Kanemitsu and Hiroyuki Kondo}, title = {An Adaptation Method for Removing Arsenate Species from Water Solution}, journal = {Pure and Applied Mathematics Journal}, volume = {4}, number = {2-1}, pages = {47-54}, doi = {10.11648/j.pamj.s.2015040201.19}, url = {https://doi.org/10.11648/j.pamj.s.2015040201.19}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.s.2015040201.19}, abstract = {This paper is based on the idea of adaptation under which we mean the replacement of one element in a system with another with similar aspects. The first adaptation comes from the replacement of orthophospheric acid H3PO4 by arsenious acid H3AsO4. There is a close relation between calcium-sulfate and calcium carbonate-arsenate species. The main objective of this note is to give an explicit formula for the ratio of each arsenal species to the total and to make an adaptation of the former by the latter to develop a new adsorption material of arsenic acid which spends almost no energy. Some recently proposed methods of using calcium sulphate or other material has ambivalent aspects regarding energy spending as well as the treatment after adsorption.}, year = {2015} }
TY - JOUR T1 - An Adaptation Method for Removing Arsenate Species from Water Solution AU - Sainyam Galhotra AU - Shigeru Kanemitsu AU - Hiroyuki Kondo Y1 - 2015/03/06 PY - 2015 N1 - https://doi.org/10.11648/j.pamj.s.2015040201.19 DO - 10.11648/j.pamj.s.2015040201.19 T2 - Pure and Applied Mathematics Journal JF - Pure and Applied Mathematics Journal JO - Pure and Applied Mathematics Journal SP - 47 EP - 54 PB - Science Publishing Group SN - 2326-9812 UR - https://doi.org/10.11648/j.pamj.s.2015040201.19 AB - This paper is based on the idea of adaptation under which we mean the replacement of one element in a system with another with similar aspects. The first adaptation comes from the replacement of orthophospheric acid H3PO4 by arsenious acid H3AsO4. There is a close relation between calcium-sulfate and calcium carbonate-arsenate species. The main objective of this note is to give an explicit formula for the ratio of each arsenal species to the total and to make an adaptation of the former by the latter to develop a new adsorption material of arsenic acid which spends almost no energy. Some recently proposed methods of using calcium sulphate or other material has ambivalent aspects regarding energy spending as well as the treatment after adsorption. VL - 4 IS - 2-1 ER -